干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 345072|回复: 207
go

INVITED REVIEWCell death induced by acute renal injury: a perspective on thecont [复制链接]

Rank: 1

积分
威望
0  
包包
0  
楼主
发表于 2009-4-21 13:35 |只看该作者 |倒序浏览 |打印
作者:Babu J.Padanilam作者单位:Department of Physiology and Biophysics, University ofNebraska Medical Center, Omaha, Nebraska 68198-4575
% [8 @9 x( i9 W/ G: s1 b                  
# |7 f. J. g: g3 R) P+ \1 t                  ' t" o$ Q) [# W7 K- W5 m
         
; k8 ?; E- @0 f9 S9 E7 G, f                        
2 v3 s' W: j- A8 K- i+ @8 [" i            
" _+ I; ?; g: Q& U* h9 O            
2 B* r: j9 H$ F            
8 i7 w$ B' m/ k7 k/ Q            1 S" z  Z. ~! n7 C. y" L" ~, \
                      8 [/ x" d0 H) A" V7 r
        % Y/ D' Q; m5 z* z
        
% Q6 {5 Z: E/ [- D        4 H9 x' N9 M+ R. {/ q* F6 M% l8 g
          【摘要】
% G: ?9 N$ W% k8 M2 x      In humans and experimental models ofrenal ischemia, tubular cells in various nephron segmentsundergo necrotic and/or apoptotic cell death. Various factors,including nucleotide depletion, electrolyte imbalance, reactive oxygenspecies, endonucleases, disruption of mitochondrial integrity, andactivation of various components of the apoptotic machinery, havebeen implicated in renal cell vulnerability. Several approaches tolimit the injury and augment the regeneration process, includingnucleotide repletion, administration of growth factors, reactive oxygenspecies scavengers, and inhibition of inducers and executioners of celldeath, proved to be effective in animal models. Nevertheless, aneffective approach to limit or prevent ischemic renal injury inhumans remains elusive, primarily because of an incompleteunderstanding of the mechanisms of cellular injury. Elucidation of celldeath pathways in animal models in the setting of renal injury andextrapolation of the findings to humans will aid in the design ofpotential therapeutic strategies. This review evaluates ourunderstanding of the molecular signaling events in apoptotic andnecrotic cell death and the contribution of various molecularcomponents of these pathways to renal injury. ! i$ Z, [5 s7 ~) S8 F. {
          【关键词】 renal ischemia molecular components signal transduction renaltubular epithelial cells therapeutic approaches
- b' R  [. b& w- L0 p                  INTRODUCTION* D8 t4 m% |2 r  A' k2 q. Z0 X
8 K# ~. G8 P8 p% Q* ?
CELLULAR DEATH AND RESORPTION arecritical biological processes that are crucial not only to normalhistogenesis and organelle turnover but also to the pathogenesis oftissue injury and diseases ( 67, 73, 99, 141, 188, 199 ).Normal physiological cell death or programmed cell death (PCD) occurscontinuously in proliferating tissues and counterbalances excessivecell proliferation during mitosis. PCD is an integral part ofmaintaining the normal functioning of the immune system and insculpting the early embryo ( 67, 188, 199 ). Nonsynchronizedapoptosis can result in pathophysiological outcome and isimplicated in causing a variety of human diseases. Excessive PCD canlead to impaired growth and development, neurodegenerative diseases,and acquired immunodeficiency syndrome ( 14, 193 ). On theother hand, indiscrete suppression of apoptosis can result inautoimmune diseases and cancer ( 62, 101 ). Tissue injury resulting from hypoxic-ischemic, toxic, and thermal insults can result in both pathological cell death (necrosis) and PCD(apoptosis). Unlike apoptosis that occurs in normal anddisease states, necrosis is induced only when cells or tissues areexposed to severe and acute injury ( 60, 97, 149 ). Themolecular pathways leading to the different modes of cell death invarious human diseases and clinical conditions and their regulationhave been under intense scrutiny during the past two decades.Dissecting and discriminating the roles of key molecules in variouscell death programs are crucial as they are attractive targets fortherapeutic intervention.4 P# _, T7 ?; Q( T! c

, _2 b3 J9 {9 w  P+ [+ JMODES OF CELL DEATH
6 ~8 G1 x/ \# L% a
0 `3 O# |3 C, e' ~/ u9 s, S  ]A distinction between the morphology of cells undergoingphysiological cell death and pathological cell death was observed morethan 50 years ago ( 67 ). However, it was not until theseminal report by Kerr et al. ( 101 ) in 1972 thatcytologists and pathologists adopted the term "apoptosis"for a morphologically distinct form of cell death. The perpetual flowof information in the past two decades defining the effector andregulatory pathways that result in apoptosis has raised furtherinterest in the role of this mode of cell death in various diseases andpathological conditions, including ischemia-reperfusion injury(IRI) of the heart, brain, and the kidney.( ^) ?9 m# U5 q4 z# u; }
1 Y$ D/ t( z; u8 N( @
Apoptosis is highly coordinated and is generally thought to bemediated by active intrinsic mechanisms, although extrinsic factors can contribute ( 16, 30, 205 ). Apoptosis isgenetically controlled and is defined by cytoplasmic and nuclearshrinkage, chromatin margination and fragmentation, and breakdown ofthe cell into multiple spherical bodies that retain membrane integrity ( 25, 101, 138, 246 ). The factors contributing to necrosis are mostly extrinsic in nature, such as osmotic, thermal, toxic, hypoxic-ischemic, and traumatic insults ( 25, 60 ).Necrosis is characterized by progressive loss of cytoplasmic membraneintegrity, rapid influx of Na  , Ca 2 , andwater, resulting in cytoplasmic swelling and nuclear pyknosis ( 9, 18, 200, 244 ). The latter feature leads to cellular fragmentation and release of lysosomal and granular contents into thesurrounding extracellular space, with subsequent inflammation ( 138 ). A recent report indicates that the release of thehigh-mobility group 1 protein by necrotic cells is involved inpromoting the inflammation. Cells deficient for high-mobility group 1 protein showed greatly reduced ability to promote inflammation( 201 ).
2 F7 X- S" x& ~  C* V" g- ^. B$ t% _8 P5 {. R1 d
Apoptosis and necrosis often occur simultaneously in a widevariety of pathological conditions as well as in cultured cells exposedto physiological activators, physical trauma, or toxins and chemicals( 141 ). The same type of insult can induce either apoptosis or necrosis, but whether one mode of cell death ispreferred over the other usually depends on the severity of the insultand the idiosyncrasy of the target cell ( 9, 25, 128, 141 ). The perception that apoptosis and necrosis are functionallyopposed forms of cell death is fading, and a consensus has developedthat both forms of cell death constitute two extremes of a continuum.
* I, ?: B" I& V3 c8 i6 M4 j% t5 q: \2 ]
MORPHOLOGICAL, BIOCHEMICAL, AND MOLECULAR MARKERS OFAPOPTOSIS AND NECROSIS
% T9 X, V" q' r$ c& i# r+ h7 a: h" C" Z; M) o
In settings of acute injury such as IRI to the kidney whereapoptosis and necrosis coexist ( 204, 205 ),discriminating between the two modes of cell death is essential.Despite the recent progress in elucidating the molecular determinantsof cell death, a precise histological or biochemical marker todifferentiate apoptosis from necrosis has not been identified.Detection of structural alterations using electron microscopy asdescribed originally by Kerr et. al ( 101 ) still remains asthe reliable criterion to distinguish between the two modes of celldeath. It is now agreed upon that a rational combination of atleast two techniques should be utilized, one to visualize morphologicalchanges and the second to determine biochemical changes, when the twomodes of cell death are asserted.4 P7 ]  s8 l, Q) y( y
& @  Z2 w2 Q9 b/ K  y  |
MORPHOLOGY OF APOPTOSIS# P# t, j: k7 y
9 f/ x( q4 o1 u6 {0 W7 I6 p( p% S
In apoptosis, the earliest characteristic change occurs inthe nucleus with chromatin condensation, pyknosis, and karyorrhexis ( 101, 246 ). The condensed chromatin appears as crescentsalong the periphery of the nuclear membrane or as spherical bodieswithin the nucleus. The cytoplasmic condensation instigates the cell toshrink and form numerous vacuoles within the cytoplasm ( 99, 246 ). Subsequently, the nuclear and plasma membranes becomeconvoluted, and small masses of condensed chromatin undergofragmentation along with condensed cytoplasm to form "apoptoticbodies." Apoptotic bodies are plasma membrane bound and oftencontain functional mitochondria and other organelles( 246 ). The stereotypical morphological changes associatedwith apoptotic cell death are depicted in Fig. 1. The phosphatidyl serine residues thatare normally localized to the inner membrane are relocated to theoutside of the cell membrane before its fragmentation. The phosphatidylserine residues on the apoptotic bodies serve as a signal to theneighboring healthy cells to phagocytose and clear the cellular debris,thus avoiding an inflammatory response ( 211 ). In a recentreport, Brown et. al ( 24 ) provide evidence that homophilicbinding between the adhesion receptor CD31 (platelet-endothelial celladhesion molecule-1) present on leukocytes and macrophages plays a keyrole in phagocytosis. Both viable cells and dying cells attach tomacrophages through these receptors, but the viable cells get detachedthrough an unknown repulsive mechanism. The repulsive signaling isimpaired in the dying cells, and they are engulfed ( 24 ).It is not known at present whether analogous systems exist in cellsother than leukocytes. In vitro, in the absence of phagocytosis,apoptotic bodies ultimately will swell and lyse, and this terminalprocess of cell death has been termed "secondary necrosis."Secondary necrosis may occur in vivo in autoimmune disorders associated with impaired clearance of apoptotic cells ( 243 ).
5 _% I, c7 D' J9 V' c- o- W( ~3 c% Z+ D0 m3 u1 F
Fig. 1. Illustration of the variousstages of apoptotic cell death. A : depiction of thestereotypical changes including condensation, changes in nuclearstructure, and fragmentation of the cell into small apoptoticbodies. In vivo, the apoptotic bodies are phagocytosed byneighboring cells, whereas in vitro they undergo swelling and eventuallysis (secondary necrosis). B : photographs ofLLC-PK 1 cells undergoing apoptosis at thecorresponding stages as shown in A. Apoptosis wasinduced by overnight exposure of the cells to 50 µM cisplatin. Thecells in the first 3 photographs were stained with Hoechst dye, and thecells in the last photograph were stained with acrydine orange andethidium bromide. In the last photograph, viable cells appear green,whereas the apoptotic cells with intact plasma membrane appeargreen with yellowish dots representing condensed chromatin;apoptotic cells and bodies that are undergoing secondary necrosisappear bright orange or red due to the plasma membrane damage and entryof ethidium bromide.
; ?$ Q- l4 i! p2 v+ t; O9 E2 k2 n/ o+ \2 j( ?- S. C
MORPHOLOGY OF NECROSIS; M8 K* \7 W4 S( x. s4 k

" N2 g7 K( A8 J+ yThe morphology of a necrotic cell is very distinct from that of acell undergoing classic apoptosis, with ultrastructural changesoccurring in both the cytoplasm and the nucleus. The main characteristic features are chromatin flocculation, swelling and degeneration of the entire cytoplasm and the mitochondrial matrix, blebbing of the plasma membrane, and eventual shedding of the cytoplasmic contents into the extracellular space ( 100 ).Unlike in apoptosis, the chromatin is not packed into discretemembrane-bound particles, but it forms many unevenly textured andirregularly shaped clumps, a feature that is being used fordifferentiating between the two modes of cell death ( 224 ).The mitochondria undergo inner membrane swelling, cristeolysis, anddisintegration ( 112 ). Polyribosomes are dissociated anddispersed throughout the cytoplasm, giving the cytoplasmic matrix adense and granular appearance. Dilation and fragmentation of thecisterns of rough endoplasmic reticulum and Golgi apparatus arefrequently observed ( 225 ).
$ B8 N3 }  O) c5 ]" V, R, b' y! G$ L8 `$ t5 j
ENDONUCLEASES AND DNA FRAGMENTATION IN APOPTOSIS ANDNECROSIS
& O- S! M& J4 [; E
- q; `: N& N; V' F& U' \: HAnalysis of DNA fragmentation by agarose gel electrophoresis isone of the most widely used biochemical markers for cell death. Thedetection of internucleosomal DNA cleavage (DNA laddering) isconsidered to be an indicator of apoptosis, whereas the random digestion of DNA resulting in a smear pattern is a marker of necrotic cell death ( 4, 8, 245 ). However, recent data from several studies indicate that discriminating between apoptosis andnecrosis based on DNA fragmentation pattern is questionable, becauseboth modes of cell death can occur in the absence or presence of DNA fragmentation ( 49, 192, 229 ).) G6 d% a7 b9 X1 g; n$ V6 N8 `8 m

4 U& n) I  J- h( w8 v" TThe cleavage of double-strand DNA in apoptotic DNA degradation isbelieved to occur by the activation of endogenousCa 2  /Mg 2  -dependent endonucleases thatspecifically cleave between nucleosomes to produce DNA fragments thatare multiples of ~180 base pairs ( 35, 229 ). DNAfragmentation represents a point of no return from the path to celldeath, because no more new cellular protein synthesis for cell survivalcan occur. Although several endonucleases that are involved inapoptosis have been identified and characterized in the pastseveral years, the indispensability of these enzymes for theapoptotic process has been lacking. Two newly identified apoptotic endonucleases [caspase-activated DNAse (CAD) andendonuclease G (Endo G)] with different enzymatic properties appear tobe involved in cellular disassembly and cell-autonomousapoptosis ( 123, 131, 180 ). The biochemicalpathways and the candidate endonucleases involved in DNA degradationare shown in Fig. 2.
* D& ]+ {( W; L; ]  P% Y* F4 [! Y2 S6 e4 z2 e6 U# I
Fig. 2. Pathways leading to DNA degradation. Mitochondrialderived endonuclease G (Endo G) and nuclear-derived, caspase-activatedDNAse (CAD) are 2 known apoptotic endonucleases involved in nuclearDNA degradation. After an apoptotic stimulus, caspase-3 cleaves theinhibitor of CAD (ICAD)/CAD complex and activates CAD to elicit DNAfragmentation in dying cells. Endo G is released from mitochondria inresponse to various apoptotic stimuli and translocates to nucleus,where it is involved in DNA degradation. The apoptosis-inducingfactor (AIF) derived from mitochondria is not a self-nuclease but mayparticipate in DNA degradation, possibly by recruiting otherendonucleases. Unlike CAD, activation of Endo G and AIF is independentof caspase activation. It is possible that Endo G and AIF mayparticipate in nuclear DNA degradation when caspase activation islimited.3 c7 C( ]- i$ y! Q9 O+ S
1 e$ C, N, B3 b
CAD is a magnesium-dependent endonuclease that normally resides inthe nuclei bound to its chaperone and inhibitor of CAD (ICAD). On anapoptotic stimulus, caspases-3 or -7 or granzyme B cleave ICAD,dissociating it from CAD, which results in activation of CAD andapoptotic internucleosomal DNA degradation ( 57, 198, 256 ). ICAD is essential for proper folding of CAD and itsactivation ( 161 ). Targeted deletion of ICAD led to absentapoptotic DNA cleavage in thymocytes and splenocytes treated withstaurosporine ( 254 ). However, DNA fragmentation did occurin certain tissues from ICAD-deficient mice, suggesting thatendonucleases other than CAD may also participate in the apoptotic process.8 Y2 i# [: w5 V5 [3 y
5 X7 g$ d. m( x; O6 G( k$ q
Endo G
2 Y4 |, x/ @; g0 x9 f) M
% @6 e6 Q6 n7 iA search for the endonucleases that are responsible forCAD-independent DNA fragmentation using biochemical and genetic methods identified mitochondrial Endo G as a second apoptotic endonuclease. Endo G is released from the mitochondrial intermembrane space andtranslocates to the nucleus to elicit DNA fragmentation ( 123, 180 ). Endo G activity is stimulated by DNA breaks, and itsspecificity for DNA degradation is more toward single-strand DNA thanduplex DNA. Thus, unlike CAD, Endo G is a mitochondria-derivedendonuclease whose activity is independent of caspase activation.4 u7 \' M  b- q( M

1 A- L! [0 R0 B5 uApoptosis-inducing factor (AIF) is another molecule involved inchromatin degradation independent of caspase activation. AIF, on itsrelease from mitochondrial intermembrane space, migrates to thenucleus, interacts with DNA ( 248 ), and induces partial chromatin condensation and large-fragment (50-kb) DNA fragmentation. However, AIF has no intrinsic endonuclease activity, and AIF-mediated DNA degradation does not require caspase activation ( 93, 216 ). It is yet to be determined whether Endo G, CAD, or otherendonucleases participate in AIF-mediated DNA degradation( 255 ).8 a) K- e9 K, x: X  O# S' F

( T! Z) ^' Q  b  v8 _" }MOLECULAR MECHANISMS OF APOPTOSIS# q, @1 W$ x9 L( [
. O) ~/ G4 A3 d2 t0 _5 y6 V
Studies by Horvitz and colleagues ( 85 ) firstelucidated the existence of a genetically controlled cell death programin which at least three gene products, CED-3, CED-4, and CED-9,participate to cause selective PCD during Caernohabditiselegans development. Subsequent studies in other organismsrevealed that several cysteine proteases that share homology to CED-3are present in mammalian cells. Fourteen such cysteine proteases havebeen identified so far, and they are identified as caspase-1 tocaspase-14 ( 220, 221 ).
8 R( [# ]  y# V/ B4 q, d9 u" `. `8 W4 D
Molecular Executioners of Apoptosis8 c( I  g& e+ G8 v; Q' i
! `6 C/ G2 x7 j4 X( q
Caspases are the molecular executioners of apoptosisbecause they bring about most of the morphological and biochemicalcharacteristics of apoptotic cell death. They are a family ofconstitutively expressed proenzymes that undergo proteolytic processingto generate its activated form ( 212, 220, 221 ).Functionally, the caspase family can be divided into two majorsubfamilies. Caspases-1,- 4, and -5 are involved in the maturation ofcytokines such as interleukin-1 and interleukin-18 and promoteproinflammatory functions. The other members of the family function aspart of the apoptotic pathway, and they are subdivided intoinitiator (caspases-2, -8, -9, and -10) and effector caspases(caspases-3, -6, and -7) ( 212, 220 ). The initiatorcaspases are activated by adapter-facilitated self-cleavage in responseto apoptotic stimuli. The effector caspases are activated throughcleavage by initiator caspases ( 78 ). During apoptosis, the effector caspases cleave numerous proteinslocated in the cell membrane, nucleus, and cytoplasm, and thesignificance of this proteolysis in the apoptotic process isincompletely elucidated. The activation of CAD (see above) tofacilitate DNA degradation ( 57 ), cleavage of nuclearlamins to facilitate nuclear shrinkage and budding ( 189 ),and activation of p21-activated kinase 2 to cause active blebbing inapoptotic cells ( 195 ) are a few of the importantfunctions mediated by caspases in the apoptotic process.
, `4 H6 E7 |" H( k: p- H7 L) t2 \
Mechanisms of Caspase Activation; }; R4 k; X: c2 \% L" ]2 K9 K; q

8 b3 [2 |& H8 R# H! h/ QTwo converging molecular signaling pathways can lead to theactivation of caspases, and the choice between the pathways that thecell adapts for its final demise is profoundly influenced by theinitial apoptotic stimulus. The first is the receptor-mediated death-signaling pathway that is triggered mostly by extrinsic signalsexemplified by the binding of a TNF ligand to its receptor (e.g., Fasto the Fas receptor). The second apoptotic pathway ismediated by mitochondria and is triggered mostly by intrinsic stresssignals and developmental instructions ( 82, 92, 94, 252 ).An overview of the two death-signaling pathways is presented in Fig. 3.0 j5 j' A& @8 k8 t7 [, ], M

( }! a. k' O) V- S  |# K% hFig. 3. Overview of death-signaling pathways in mammalian cells:The death receptor pathway ( left ) is initiated by thebinding of a ligand (Eg: FasL) to its receptor Fas, which results inthe sequential recruitment of FADD and pro-caspase-8. c-FLIP can blockthe recruitment of pro-caspase-8 to the complex. The proximity ofseveral pro-caspase-8 molecules results in its activation. Caspase-8can proteolytically activate caspase-3, or it can cleave Bid to itstruncated form t-Bid, which binds to Bax and gets integrated into themitochondrial membrane to release cytochrome c. In responseto various cellular stress-induced apoptotic stimuli, the intrinsicmitochondrial pathway is activated. This pathway involves thetranslocation of proapoptotic molecules such as Bax from thecytosol to the mitochondrial membrane. Bax can release cytochrome c from the mitochondria into the cytosol. Cytochrome c associates with Apaf-1 and caspase-9 to form theapoptosome and subsequent activation of caspase-3. Mitochondria alsorelease AIF and Endo G, which may exert their effects on the nuclei.Mitochondria released Smac/Diablo and Omi/HtrA2 sequesters inhibitorsof apoptosis (IAPs) to prevent them from inhibiting caspase-3.BNIP3 is a Bcl2 family member that is translocated and integrated intothe mitochondria. Unlike other Bcl2 family members, BNIP3 can inducenecrotic cell death in response to death stimuli. Activation of poly(ADP-ribose) polymerase (PARP) leads to NAD   depletion andmay induce mitochondrial depolarization to release AIF. ROS, reactiveoxygen species.
* j( G# C: [9 o+ k
2 C, }/ |( B* dSignaling Through Death Receptors( V5 K0 D& P8 M) h) d6 w# t
" R: C4 ]9 Y7 l+ x$ Z
Caspase activation through cell death receptors is mediated by asubset of the TNF receptor superfamily, which includes Fas/CD95, TNFreceptor (TNFR)-1, and death receptor-3. Binding of the ligand trimerizes the receptors and recruits death domain-containing moleculessuch as FADD/MORT, TRADD, and RAIDD to their cytoplasmic regions of thereceptors to form a death-inducing signaling complex ( 92, 94, 238 ). The interactions between death effector domains (DED)present in both FADD and pro-caspase-8 lead to the recruitment ofseveral pro-caspase-8 molecules to the complex. The key initiator caspase that instigates the downstream caspase cascade in the deathreceptor pathway is caspase-8 ( 6 ). The molecular mechanism that mediates the initiator caspase activation is still unclear, but itis thought to be regulated by protein-protein interactions. It issuggested that the close proximity of these molecules will activate thelow intrinsic protease activity in them ( 159 ).Pro-caspase-8 undergoes autoproteolytic activation and initiates acaspase cascade to activate the effector caspases.  R2 }  Y* |4 r+ t0 b# s

! Q2 s3 ~* R' b9 d; e2 ac-FLIP is a naturally occurring dominant negative antagonist of deathreceptor-mediated caspase-8 activation and contains two DEDs and adefective caspase-like domain. c-FLIP can associate with DEDs of FADDand caspase-8, thus interfering with the recruitment of caspase-8 toFADD ( 88, 226 ). Mouse embryonic fibroblasts derived fromcaspase-8-deficient mice are resistant to Fas, TNF-R1, or DR3stimulation but susceptible to agents that utilize the mitochondrialdeath pathway ( 232 ). This further demonstrates the crucialrole played by caspase-8 in transducing signals downstream of the death receptors.& F  C. l' b7 s4 s, Y

; \  p+ a1 `% j7 jMitochondria and Bcl2 Family as Regulators of Cell Death. n. h" {* f, ^  W( _
- d, a' F0 B" S0 g# N
The apoptotic signal transduction pathways that are undertakenby the cell in response to an intrinsic signal such as DNA damage,glucocorticoids, perturbations in redox balance, and ceramide andgrowth factor deprivation involve mitochondrial release of proapoptotic molecules ( 92, 108, 215 ). Bcl2 familymembers control the permeability of the mitochondrial outer membrane to release various proapoptotic proteins ( 92 ).
: O# v- @4 ?: J9 a& s5 h) k  c" H) K, ?& k$ ?$ E* |
The ever-growing mammalian Bcl-2 family of apoptotic regulatorsshares homology with the C. elegans antiapoptoticmolecule CED-9 ( 32, 106 ). Based on their structure andfunctional similarities, Bcl2 family members are divided into theproapoptotic (Bax, Bak, and Bok) and antiapoptotic (Bcl2,BclX L, Bcl-w, Mcl-1, and A1) groups ( 92 ). Athird class of death effector molecules sharing homology only to theBcl-2 homology-3 (BH3) domain can activate proapoptotic Bcl2 familymembers or inactivate antiapoptotic members ( 86, 213 ).The family of BH3-only proteins include Bin, Bid, Bad, Bik, BNIP3,Noxa, Puma, and Hrk ( 86, 162, 213 ). Pro- andantiapoptotic members of the Bcl-2 family can homodimerize orheterodimerize, thus forming a large number of combinations within acell. Heterodimerization between a proapoptotic member and anantiapoptotic member can nullify the functions of each ( 191 ). The outcome of a cell that received anapoptotic stimulus is thought to depend partly on the ratio of thedeath promoter to the death suppressor ( 1, 2 ). The precisemechanisms by which the Bcl-2 family members modulate apoptosisare still not completely elucidated, but their key functions revolvearound the release of proapoptotic factors, especially cytochrome c from the mitochondrial intermembrane compartment into thecytosol ( 168, 217 ).
: F: Q3 J) ^% d4 Y. \) ~4 s5 D* v: W) S+ V; C" Z/ U
Several models have been proposed to explain how Bcl-2 family memberscan cause the exit of large molecules such as cytochrome c from the mitochondria. It is suggested that 1 ) Bcl-2proteins may insert themselves into the outer mitochondrial membrane,where they could form channels that allow the passage of molecules( 191 ); 2 ) Bcl-2 family members may interactwith other mitochondrial membrane proteins (e.g., the voltage-dependention channel or VDAC) to form large-pore channels ( 191, 209, 227, 228 ); and 3 ) Bcl-2 family members may altermitochondrial membrane permeability, causing mitochondrial swelling andeventual rupture of the outer membrane, thus releasing intermembraneproteins into the cytosol ( 82 ). Although evidence tosupport all of the above models is presented by various investigators,further studies are needed to resolve this crucial issue.3 j4 o- V2 n! {% C! i; H$ R. D

: R& F# Z; B" [2 n9 i) oThe release of cytochrome c by mitochondria is almost auniversal feature found in response to various intracellular stimuli, including DNA damage, glucocorticoids, oxidative injury, and growth factor deprivation, although they may not play a significant role inreceptor-mediated apoptosis ( 3, 109 ). Cytosoliccytochrome c triggers the formation of the mitochondrialapoptosome, which consists of cytochrome c, apaf-1, andcaspase-9 ( 92, 94 ). Cytochrome c binds andoligomerizes the adapter protein apaf-1, which recruits pro-caspase-9.This causes pro-caspase-9 to autocatalytically activate to form itsactive form caspase-9 and proteolytically activate caspase-3. Asexpected, cytochrome c -deficient embryonic stem cells wereresistant to UV light and staurosporine-induced apoptosis andpartially resistant to apoptotic stimuli from serum deprivation.However, cytochrome c -deficient cells readily underwent apoptosis in response to receptor-mediated apoptoticstimuli ( 92, 94 ).% k( N; J- d  U& m

, B/ m0 W8 y1 A5 Z- ?In addition to cytochrome c, mitochondria release a largenumber of other polypeptides, including AIF ( 135 ), Endo G(see above), second mitochondrial activator of caspases (Smac/DIABLO) ( 52 ), HtrA2/Omi ( 124 ), and pro-caspases-2,-3, and -9 from the intermembrane space ( 134 ). Smac/DIABLOand HtrA2/Omi promote apoptotic cell death by inhibiting a set ofproteins termed inhibitors of apoptosis (IAPs) ( 52, 124 ). IAPs (e.g., c-IAP1, c-IAP2, X-linked IAP, Survivin) canbind to caspases and block cell death induced by a variety of stimuli( 207 ).- d; h  ]: m$ \- ?8 s  [) \& H; W
! f( X( z. i1 z4 H4 {: m
AIF is a flavoprotein that translocates from mitochondria to nuclei onapoptotic stimulation and induces caspase-independent chromatincondensation and large-size (50-kb) DNA fragmentation ( 216 ). AIF can also induce mitochondrial release ofcytochrome c and thus augment the cell death process throughthe apoptosome pathway ( 216 ). Recent studies indicate thatheat shock protein 70, which is upregulated in cellular stress( 231 ), exerts its cytoprotective function by binding andinhibiting AIF activity ( 190 ).9 M! f$ E) X3 B

: Z. @$ s8 L9 M5 @. }3 VThus mitochondria participate in the apoptotic pathways through atleast two independent and redundant pathways, one involving theactivation of caspases and the other mediated by AIF. Studies utilizingknockout mice for cytochrome c, apaf-1, caspase-9, and AIFtogether with caspase inhibition studies suggested that AIF-mediated apoptosis is dependent on the initial stimulus( 92 ). AIF-deficient embryonic stem cells, when cotreatedwith caspase inhibitors, were protected from apoptosis inducedby the oxidative stress inducer menadione, whereas it was onlypartially protected from apoptosis in response to serumwithdrawal. The hierarchical nature and the interactions between AIFand the apoptosome in cell death pathways remain largely unknown( 92 ).
3 x: d8 }0 x3 ?$ q! s6 P5 Z+ h) a4 f
Although the extrinsic and intrinsic signals are considered to take twodistinct pathways to execute cell death, receptor-initiated cell deathcan involve the mitochondrial pathway through the BH3-only protein Bid.In hepatocytes, activation of caspase-8 by Fas leads to cleavage of Bidto its active form t-Bid. t-Bid translocates to mitochondria andassociates with Bcl-2-like proteins to disrupt mitochondrial integrity( 70, 240 ). It should be noted that the cross talk betweenthe two pathways is minimal under most conditions. A recent reportindicates that cytotoxic stress induced mitochondrial permeability, andrelease of various apoptogenic factors is mediated by caspase-2 inhuman fibroblasts transfected with adenoviral oncogene E1A. Smallinterfering RNA (SiRNA)-mediated silencing of caspase-2 expressionprevented cisplatin, etoposide, and UV light-induced apoptosisin these cells. It is argued that in this setting, mitochondria areamplifiers of caspase activity rather than initiators of caspaseactivation ( 114 ).* F* Z: \# U3 _4 B: ^" O
1 m6 F4 b: i7 H4 _+ o8 P
Mitochondria can also initiate a necrosis-like PCD independently ofcaspase activation. On stimulation by TNF, mitochondria are shown toproduce reactive oxygen species (ROS) that can induce necrotic celldeath, and ROS scavengers attenuated the injury ( 203, 233 ). An impairment in the cytochrome c or AIFpathway can switch the cell death mode from apoptosis tonecrosis. Inhibition of caspases can also switch apoptosis tonecrosis once mitochondria are induced. Thus mitochondria play acentral role in executing different modes of cell death ( 116, 118, 119 ). In addition to mitochondria, several other cellularorganelles may participate in apoptotic cell death, and the detailsare reviewed elsewhere ( 63 ).3 z1 K! K& ~" B1 m6 J8 b' d5 G; Z

9 c3 W6 U% O/ t" c8 VAPOPTOSIS-BASED THERAPEUTIC AGENTS
( J! d7 F& g" [* g; I5 ^4 V; L% o2 v) J; Q% s, \* }3 l
The participation of an ever-growing number of molecules in theapoptotic machinery offers a plethora of opportunities for apoptosis modulation ( 81 ). Various strategies thatare being developed include the use of antisense oligonucleotides,recombinant proteins, small molecules to disrupt protein-proteininteractions, and caspase inhibitors ( 163, 194 ).
" ?$ }# n0 b2 E
. B7 E6 ^! C( w& S' H1 @* u' i7 JAn antisense oligonucleotide (G-3139) that targets the first six codonsof the Bcl-2 open reading frame is shown to downregulate its mRNA.Continuous infusion of G-3139 markedly reduced tumor growth of Merckelcell carcinomas that were xenografted into SCID mice. G-3139 ispresently in clinical trials for malignant melanoma and other forms ofhuman cancers. Antisense strategies are also being attempted tomodulate the expression of Bcl-XL, c-FLIP, and survivin( 163 ).# b+ [* N# U4 U% {

2 E" ~+ D. t  o2 M: ?Caspase inhibition using active site mimetic peptide ketones, such asfmk [benzyloxycarbonyl (z)-VAD-fluromethylketone], cmk (z-YVAD-fmk/chloromethylketone), z-DEVD-fmk/cmk, and z-D-cmk, haveprovided valuable information regarding their use as apoptotic inhibitors ( 66 ). Caspase inhibition has shown remarkableefficacy in inhibiting apoptotic cell death in different models ofIRI, including cerebral, cardiac, and kidney ( 33, 43, 58 ).Cell-permeable specific caspase inhibitors are being developed byvarious pharmaceutical companies and will undoubtedly be more viable intreating acute injuries such as IRI, transplantation, and cerebralstroke ( 163 ).4 U6 k: ^9 Z/ k! y# P8 i
8 ^* n- P$ O3 K7 o# F* A
MOLECULAR MECHANISMS OF NECROSIS
& W7 z$ D! [8 N" G1 F, L- B6 ]: S+ U1 E
Necrosis is the prominent mode of cell death that occurs invarious neurodegenerative conditions and as a consequence toischemic injury in various organs including the brain andheart. Even though great progress has been made in the last decade inunderstanding the molecular mechanisms of apoptosis, thebiochemical pathways leading to necrotic cell death remain poorlyunderstood ( 141 ). Necrosis is long thought to be a"passive" process occurring as a consequence of acute ATPdepletion. Several ATP-dependent ion channels become ineffective,leading to ion dyshomeostasis, disruption of the actin cytoskeleton,cell swelling, membrane blebbing, and eventual collapse of the cell( 9, 137, 169 ). Recent reports suggest that in addition tothe passive mechanisms, "active" mechanisms may also participate inthe necrotic process.8 y) n2 W3 }5 ~, \
  T% A: p& ]4 Q7 n  K7 K2 W7 i0 F8 h
Na   Overloading4 ]# Q6 h9 k) w) s4 h
4 t* B! R# V# V1 j
In ischemia or hypoxic injury, energy depletion occurs bydefective ATP production combined with the rapid consumption of ATP byion pumps and through hydrolysis and leakage. The necrotic volumeincrease associated with necrotic cell death is initiated by an influxof Na   and release of ATP due to membrane leakage( 171 ). The increased Na   level in the cytosolactivates Na   -K   -ATPase, resulting indissipation of ATP. In the beginning stages of the injury, asimultaneous efflux of K   maintains ion homeostasis. Severedepletion of ATP leads to failure of the pump-leak balance mechanism,leading to an influx of Na   and water that results inswelling and collapse of the cell. Thus the overload of Na   concomitant with severe ATP depletion seems to be the major determinant of a necrotic outcome ( 27 ). The mechanism by which therapid influx of Na   takes place is still not elucidated. Arole for several of the ion channels such as theNa   /K   pump, Na   /H   exchanger, Na   /Ca 2  exchanger, andNa   -K   -2Cl cotransporter has beenreported in various cell lines ( 27, 28, 120 ). However, auniversal role for any of these ion channels in augmenting necroticcell death is yet to be established.
8 k/ j4 u# \9 I% I$ h- d8 C! M; v
Ca 2   Accumulation
# s5 u, m$ Y- ?: N
  I( p" `# j/ `/ w  `' KCytosolic Ca 2  plays a role in linking ATP depletionand necrosis in some cell types ( 9 ), but several othercell types including hepatocytes and renal tubules can undergo necroticcell death in its absence ( 90 ). The ROS-mediated necroticvolume increase and Na   influx are suggested to beinitiated by the binding of the free radicals to ion channels includingnonselective Ca 2  channels ( 10, 83, 84, 105 ).The increased levels of Na   activatesNa   -K   -ATPase and consumes ATP, which furtheractivates nonselective Ca 2  channels, resulting in massivecytosolic Ca 2  accumulation. High levels ofCa 2  can participate in ATP depletion by activatingCa 2  -ATPase and mitochondrial depolarization. The increasedlevels of Ca 2  activate endonucleases to degrade DNA andactivate cellular proteases such as calpain to degrade severalstructural and signaling proteins ( 239 ). The role ofCa 2  in oxidative stress is reviewed in detail by Ermak andDavies ( 59 ).* a. m& h' e3 R; j. O3 z) i" E
5 L; c7 d2 @6 `) j
Recently, two novel Ca 2  -permeable cation channelsbelonging to the long transient receptor potential (TRP) channelfamily, LTRPC2 and LTRPC7, are found to be activated by a disruption of the redox (oxidation-reduction) status ( 79, 160, 182 ).LTRPC7 is an intracellular ligand-gated ion channel that can permeate both Ca 2  and Mg 2  and is suppressed by higherMg 2  -ATP concentration. In ischemic conditions, thelevels of ATP-bound Mg 2  fall, which may activate inwardand outward currents through LTRPC7 ( 160 ). LTRPC2 is aNSCC that is permeant to both Na   and Ca 2 . Itis activated by binding of ADP-ribose and increased concentration ofarachidonic acid and Ca 2  but suppressed by highNa   levels. LTRPC2 is activated by micromolar levels ofH 2 O 2 and agents that produce ROS or reactivenitrogen species, thus representing an intrinsic mechanism thatmediates Ca 2  and Na   overload in response tochanges in redox status ( 79, 182 ).  L  r3 V; Y$ I/ e; }

$ Z; J3 _% g2 k! q( r% \, w( g/ i& M5 }Mild oxidative stress such as that induced by moderate levels ofH 2 O 2 can increase cytoplasmic Ca 2  levels by its release from internal stores such as the endoplasmic reticulum (ER). This process is mediated through protein kinase C andionositol triphosphate (InsP 3 ). A recent study demonstrated that in C. elegans, the Ca 2  -binding proteinscalreticulin and calnexin are essential for stimulating necrosis bystresses not involving Ca 2  influx across the plasmamembrane ( 247 ).
( |, \' p3 P: |3 T8 O, `  b. B( {0 ?0 K) f2 J$ O* R0 {  n* h
The Mitochondrial Connection
; A4 p/ }8 }, u) D
: z$ o( T% Q, a# R7 u7 }It is well known that mitochondria participate in necrotic andapoptotic cell death by opening the mitochondrial permeability transition pore. Several second messengers and proapoptoticproteins including Bcl2 family members can induce the permeabilization of the mitochondrial permeability transition pore ( 38, 108 ). BNIP3 is a member of the Bcl2 family that is looselyassociated with mitochondria in the normal state but gets fullyintegrated into the mitochondrial outer membrane after a deathstimulus. BNIP3-transfected cells are found to undergo cell deathindependently of Apaf-1, caspase activation, cytochrome c release, and nuclear translocation of AIF. The cells exhibitedmorphology typical of the necrotic form of cell death with plasmamembrane permeability, mitochondrial damage, extensive cytoplasmicvacuolation, and mitochondrial autophagy. It is proposed that BNIP3 canmediate necrosis-like cell death through mitochondrial permeabilitytransition pore opening and mitochondrial dysfunction( 230 ). The expression of BNIP3 is shown to be induced inseveral cell lines in response to hypoxic injury. Overexpression of thehypoxia-inducible factor-1 also induced the expression of BNIP3,resulting in a necrotic form of cell death ( 71 ).
+ E; _9 E0 y- I9 M" [8 _/ T8 \4 ^
- c/ p% x  g( D% W4 p7 yOne of the major factors that determine whether a cell undergoesapoptosis or necrosis is the level of intracellular ATP. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that adds ADP-ribosepolymers to various proteins and to itself when activated by DNA strandbreaks ( 143 ). PARP activation is thought to exacerbate ATPdepletion and induce necrotic cell death ( 72, 184 ).Overactivation of PARP after a cellular injury can result inconsumption of its substrate -NAD  . In an effort toresynthesize NAD  , ATP is massively depleted and the cellsdie from lack of energy ( 72, 184 ). PARP inhibitionprotected cells from necrotic cell death in neuronal ischemia,myocardial ischemia, and renal ischemia ( 113, 133, 140 ). PARP-deficient mice are protected against neuronaland myocardial ischemic injury and diabetic pancreatic damage( 56, 183, 257 ), but they are susceptible to apoptotic cell death elicited by TNF- and Fas in hepatocytes( 117 ) and -irradiation. Fibroblasts from PARP / mice are protected from ATP depletion and necrotic cell death but notfrom apoptotic cell death ( 72 ). A recent study in L929fibrosarcoma cells showed that ligation of CD95 inducesapoptosis, whereas TNF elicits necrosis in the cells. Furtherinvestigation into the mechanism of this discrepancy showed that TNFinduces PARP activation, leading to ATP depletion and necrosis. Incontrast, CD95 ligation cause PARP cleavage, thereby maintaining ATPlevels, and the cells die by apoptosis ( 136 ).
4 a% ?4 b, E/ X" {8 I- Y$ F
3 C: p) T. d1 kA recent report by Yu et. al ( 249 ), however, indicatesthat NAD   depletion and subsequent energy depletion may notbe the cause of cell death after PARP activation. Instead,NAD   decrement may act only as a signal for AIFtranslocation from mitochondria to cytosol and to nucleus. AIFinitiates nuclear condensation and subsequent chromatin fragmentation,culminating in cellular demise.
3 _) s( s8 P. o' T  L7 A/ y  U2 `( W/ |! W; [2 P  O
CELL DEATH IN ISCHEMIC ACUTE RENAL FAILURE8 u$ H, ?9 z3 t6 r+ G( A
1 ?8 d' b+ t) P% ^* T9 r
A reduction in the glomerular filtration rate (GFR) is the primarychange in renal function caused by ARF in humans and experimental animal models ( 53 ). Pathophysiological mechanisms involvedin the decline in GFR can be attributed to persistent vasoconstriction due to an imbalance between vasoconstrictive and vasodilatory mediators( 36, 37 ); vascular obstruction caused byendothelial-leukocyte interactions ( 31, 187 );tubuloglomerular feedback in response to increased solute delivery tothe macula densa ( 104, 142 ); tubular obstruction caused bydetachment of tubular epithelial cells from the basement membrane andback-leak of glomerular filtrate as a consequence of disruption of theepithelial cell layer ( 5, 20, 21, 65 ).
# q8 y+ h* f  y0 z& E6 \! k0 q- Q( F, M1 _! n' J0 t. ~
Vascular Dysfunction in Renal Ischemia, E5 B8 Z+ o/ O/ M7 w
* |- n2 `. ?: o6 |9 T: I! p
After an ischemic insult, total renal blood flow returnstoward normal, but marked, regional alterations occur. The outer medullary region is marginally oxygenated under normal conditions andhas high energy demands. The blood flow to outer medullary orcorticomedullary junction region remains ~10% of normal during reperfusion ( 234, 235 ). The microvasculature in thisregion becomes congested due to interstitial edema, red blood celltrapping, leukocyte adherence, and extravasation ( 22 ). Itis still unclear whether the medullary vascular congestion or thepreglomerular vasoconstriction is the primary reason for causing theimpaired GFR ( 206 ). The reduced blood flow and hypoxicconditions that occur in renal ischemia lead to deprivation ofvital nutrients and loss of ATP in the vascular cells and in thenephron segments of the outer medullary region. In the vascular smoothmuscle cells and endothelial cells, disorganization of F-actin isobserved. The endothelial cells undergo swelling, leakage, cellactivation, and dysfunction ( 111, 158 ). Injection ofendothelial cells expressing endothelial nitric oxide synthase intorats subjected to renal ischemia resulted in the implantationof these cells in the renal microvasculature and functional protectionof ischemic kidneys ( 23 ). A recent studydemonstrated that permanent damage to peritubular capillaries occurredin rats that underwent renal ischemia and may partly accountfor the pathogenesis of chronic renal failure in this setting( 11 ).: [3 v& n$ v, C

& y* I) Z- Z- `" P) PTubular Dysfunction in Renal Ischemia# x% N+ T0 \) z2 }
% P; L7 J8 X% s! G# K4 e. c
At the tubular level, the S3 segment of the proximal tubule thattraverses the outermedullary segment is extremely susceptible toischemic injury. This is due to their low glycolytic capacity to generate ATP in the setting of rapid ATP depletion resulting fromimpaired oxidative phosphorylation. The acute, severe ATP depletionleads to necrotic cell death. The medullary thick ascending limbs,although situated in the same region, do not undergo the same level ofinjury because they have greater glycolytic capacity to generate ATPunder ischemic conditions ( 20 ). However, the cellsin this nephron segment and other distal tubule cells undergo sublethalchanges and produce various chemokines and cytokines that may haveautocrine and/or paracrine effects on the injury and regenerationprocess of the kidney postischemia ( 125, 127 ). Theavailability of ATP in the distal tubule cells makes them lessvulnerable to injury and to promote apoptotic cell death pathwaysunder severe stress conditions.
0 H3 ?9 m0 s) C& Z8 d0 f
, j' u, d. c  \. ^Irreversible cell death induced by ischemic, toxic, andobstructive ARF was long considered to be of the necrotic type, but recent data from several laboratories indicate that bothapoptosis and necrosis can occur simultaneously in these formsof ARF in humans and experimental animal models ( 46 ). Therelative contribution of the two mechanisms to the initial cell lossdepends on the severity of the injury and the cell type( 127 ).
: v* A4 e* T" r8 B: \& e% {) A; c) k' n  ]  v# D
MECHANISMS OF NECROSIS IN RENAL ISCHEMIA
8 u4 R/ Y  t. r. D" w" Q$ V
7 d  u& D2 O: c6 R8 wThe molecular pathways adopted by the renal tissue that lead tonecrotic cell death after an ischemic episode are not fully understood and are now obscured even more by attempts to explore thecontribution of apoptosis to renal injury. Hypoxia resulting from decreased blood flow leads to a variety of secondary effects, including a breakdown in cellular energy metabolism, endothelial andepithelial cell dysfunction, cell swelling, generation of ROS, increasein free cytosolic Ca 2 , and activation of phospholipases,proteases, and endonucleases ( 20, 197, 229 ). Recentevidence indicates that active mechanisms such as activation of PARPplay important roles in necrotic cell death after renalischemia ( 140 ). A hypothetical scheme ofbiochemical events that may engage in positive-feedback loops toaccelerate cellular disintegration culminating in necrotic cell deathis shown in Fig. 4.' D- a/ N* R' c1 y# b

* Z6 c+ B, p" Q* t1 M# TFig. 4. Hypothetical sequence of various biochemical eventseliciting necrotic cell death. The acute depletion of ATP associatedwith ischemic-hypoxic injury is exacerbated by mitochondrialdysfunction and activation of various ATP-dependent ion channels, whichfurther depletes ATP by a feedback mechanism. An increase in cytosolicCa 2  and ROS triggers various converging biochemicalpathways, leading to activation of cellular degradative enzymes andultimate cellular disintegration./ p5 R2 u, _- c8 P/ z6 ]9 j0 R
8 C$ S  j7 v4 o. Q# e
ATP Depletion% B: T: Z: ?9 E: F: t* S! J. P
3 ?9 U# ]; W% l" a& O
Ischemic and toxic renal injury leads to a rapiddecrease in the level of the adenine nucleotide pool (ATP, ADP, andAMP) ( 241 ). In the absence of reperfusion, the adeninenucleotides are degraded to the purine nucleosides adenosine andinosine and to the purine base hypoxanthine. The purine metabolites andthe base are membrane permeable. Prolonged ischemia will leadto the continued loss of these precursor nucleosides, and the cell is dependent on the endogenous precursor compounds that become available during the reperfusion for ATP resynthesis ( 7, 214 ).Prolonged ischemia also leads to mitochondrial dysfunction andimpaired oxidative phosphorylation. Thus the rate of repletion of ATPis dependent on the severity and duration of the injury ( 125, 129 ).% ?" U; C+ Y0 r3 B- A; P1 {

% p; w' G; n3 k5 Z5 ^) ANa   Influx and "Oncosis"
! d) B  {3 |" y2 [% X: [6 n; N( z# w6 G4 N9 |  ]
ATP depletion leads to disruption in the microvillous actin, thecytoskeletal meshwork, and the cortical actin of the proximal tubuleepithelial cell ( 154, 156 ). Disruption of the cortical actin cytoskeleton leads to redistribution ofNa   -K   -ATPase to the apical membrane of theproximal tubule epithelial cell, and this will alter theNa   handling of the proximal tubule ( 155, 157 ). A high fraction of filtered Na   will reach themacula densa and result in increased vasoconstriction via thetubuloglomerular feedback mechanism ( 153 ). Prolonged ischemia can compromise Na   -K   -ATPaseactivity, leading to influx and accumulation of Na  ,Cl, and water in the cytosol. Severe depletion of ATPleads to failure of the pump-leak balance mechanism, resulting in cellswelling or oncosis, a typical feature of necrosis ( 241 ).& E' A- V, J4 y" }8 C  d8 Z
5 k6 ?7 Z. ?" a, u. w1 o
Increased Cytosolic Ca 2   Concentration3 t* L5 C$ K% ]' Z! `

. D+ R9 d+ d4 Y+ B# xRenal proximal tubular cells undergo a significant increase infree cytosolic ionized Ca 2  concentration([Ca 2  ] i ) from 170 to 390 nM during a 5-minexposure to hypoxic injury. The increase in Ca 2  precededhypoxic membrane damage and was reversible if reoxygenated beforethe cell undergoes lethal injury ( 53 ). A role forCa 2  in mediating the injury is further substantiated bythe findings that removal of extracellular Ca 2 , andchelation of intracellular Ca 2 , protected the cells fromhypoxic injury ( 53 ). Furthermore, Ca 2  channelblockers are found to ameliorate ischemic renal injury inexperimental animal models and in humans. Overloading ofCa 2  in mitochondria results in uncoupling of oxidativephosphorylation and subsequent reduction in ATP synthesis and increasedproduction of superoxides. The mechanisms by which a rise inCa 2  level contributes to the pathophysiology of ARF mayinclude activation of Ca 2  -dependent proteases,phospholipases, and endonucleases ( 20, 53 ).& B2 `& m/ B7 P7 k- N4 s$ j/ B& @  U$ T

, h) l! I2 I! {* y! w9 MProteases1 O+ d' h8 d  X, `

6 S, @5 ?2 {1 A5 `Prolonged increases in [Ca 2  ] i levelsactivates the Ca 2  -dependent cysteine protease calpain.Renal proximal tubules constitutively express calpains and areactivated in response to toxic and hypoxic injuries. Inhibition ofcalpain activity using various pharmacological agents amelioratednecrotic cell death in proximal tubule cells (PTC) subjected to hypoxicinjury or ATP depletion ( 80, 130, 202, 208 ).
" h* b# N% U* R) B
3 m2 S2 i5 ~6 M1 y: j# dMeprin (metallopeptidase from renal tissue) is a zinc-dependentmetalloendopeptidase that is present in the brush-border membrane ofrenal proximal tubular epithelial cells, accounting for ~5% of thetotal tubular protein ( 223 ). Meprin is localized to the apical brush border ( 29, 237 ). After renal tubularepithelial cell injury, it translocates to the basement membrane andcleaves one of the basement membrane components, nidogen. Mouse strains expressing lower levels of meprin are less susceptible toischemic injury compared with those expressing normal levels( 223 ). Exogenously added meprin is cytotoxic to renal PTC,and inhibition of meprin provided both histological and functionalrenal protection after ischemic injury ( 29, 237 ).: q( C- R8 p4 n2 I
# g: Q, W$ j. N$ z
Phospholipases! H% V& ^) _% z3 b! R

1 K! q" L. n; Q- n0 u4 R5 BIschemic cell injury is associated with phospholipolysisand activation of various phospholipases. PLA 2 is one ofthe acyl hydrolases with various isoforms that are dependent on orindependent of Ca 2  for their activation ( 19 ).PLA 2 activation causes membrane phospholipid breakdownduring ischemic injury in various tissues including the kidney( 185, 186 ). The mechanism by which PLA 2 activation appends the injury is not clear. It is possible that thebreakdown in cell membrane integrity, generation of inflammatory mediators, and the cytotoxicity resulting from the accumulation oflysophospholipids and free fatty acids accentuate cellular injury( 20, 144 ). The role of free fatty acids in mediating theinjury, however, is controversial because exposure of proximal tubulesto unsaturated free fatty acids protected against hypoxic injury( 250, 251 ).
. q2 J0 Z8 \/ }# Z8 P' [  I, H: T- m" c/ w6 {) M
Endonucleases0 c& L7 o" O, G( |+ u  r6 \
. w% T5 d/ J/ ?  D0 ~( S# c
Fragmentation of DNA has been demonstrated after IRI in animalmodels and hypoxia/reoxygenation injury in isolated PTC culture models( 15, 49, 89, 204 ). DNA ladder formation and DNA strandbreaks demonstrated in postischemic kidneys and isolated proximal tubular cells were characteristic of endonuclease activation. A 15-kDa nuclear endonuclease and a 30-kDa cytosolic DNAse/endonuclease that are induced and activated postischemic renal injury have been described ( 13 ). Inhibition of the activities of theseendonucleases protected renal cells from hypoxia-mediated necrotic celldeath. The mechanisms by which these enzymes are activated are notelucidated. It is proposed that the DNA strand breaks induced byoxidative damage may induce and activate the endonucleases. IRI leadsto massive DNA damage shortly after injury in renal epithelial cells ( 229 ). The degree of DNA damage that renders cell deathirreversible and whether inhibition of the activity of theendonucleases at the reversible stage ameliorate cell death in renalischemia are not known.
$ n& \0 c  d6 i+ q2 @2 r+ `& d- m- j' Q7 X5 [3 S& v& F6 ~
IRI in the kidney is associated with generation of ROS in theneutrophils and in parenchymal cells such as proximal tubules andendothelium. The various sources of production of ROS include theimpaired mitochondrial electron transport chain, cyclooxygenases, lipoxygenases, and xanthine oxidase ( 219 ). The superoxidescan react with nitric oxide (NO) and form peroxynitrate ( 53, 69 ). ROS has been implicated in mediating ischemic renalinjury, and treatment with antioxidants or free radical scavengersameliorated renal injury ( 23, 167, 181 ). The mechanisms bywhich ROS induce damage to the cells include peroxidation of lipidmembranes, protein denaturation, and DNA strand breaks( 34 ). The massive DNA damage associated with renalischemia leads to excessive activation of the DNA repair enzymePARP ( 64, 140 ) and subsequent ATP depletion ( 72, 253 ).
$ S: D1 {* A  E& ^9 X7 J0 b8 Z" M: O2 i- @2 _3 z6 D8 e  Z8 k
PARP+ M+ f7 Q. T# [' A8 t2 c

7 L7 K* N1 L* bInhibition of PARP protected renal PTC from oxidant injury andnecrotic cell death. Prolonged incubation of renal PTC in the presenceof PARP inhibitors, however, induced apoptotic cell death. Themechanism of induction of the apoptotic pathway in the absence ofPARP is yet to be determined. Administration of PARP inhibitors to ratspost-ischemic renal injury prevented the decline of ATP inrenal tissues. The levels of serum creatinine and BUN values returnedto normal levels at a faster rate in PARP-inhibited animals comparedwith that in vehicle-treated animals ( 140 ).
$ i4 Y8 n- E0 q7 Q5 a1 @8 P
6 ^. |) D" U0 s! {6 s1 r& BInducible Nitric Oxide Synthase and Osteopontin
! S+ O4 ^( U5 `* T
! ]1 J! j# s6 ~! L3 xNO produced in the renal proximal tubules in response toischemic injury is mediated by the inducible form of nitricoxide synthase (iNOS) ( 181 ). Mice deficient for iNOS areprotected against ischemic renal injury ( 69 ).Specific inhibition of iNOS using antisense oligonucleotides beforeinducement of ischemic renal injury also resulted in a dramaticfunctional protection of kidneys from acute ischemia in rats( 69 ). There is some evidence that expression of iNOSpost-renal injury may be modulated by osteopontin. Recombinantosteopontin can inhibit iNOS expression and production of NO in renalepithelial cells ( 87 ). Osteopontin and its receptor CD44are highly induced postinjury in distal tubules, and administration ofrenoprotective agents such as IGF-1 further enhanced its expression( 121, 177 ). Osteopontin-deficient mice are moresusceptible to injury and showed increased levels of iNOS expressionand prevalence of nitrosylated proteins ( 166 ).
# f( x* t* s; D" t/ w, `, ]
4 m' t. c+ D% mProtein Kinases
  K( v* \  W9 U, t: n! z" D9 X2 p% @# d  A
The PKC family of serine-threonine kinases encompasses 12 different isozymes. PKC can be activated by Ca 2 ,phosphatidyl serines, and diacylglycerol. The PKC family transduces amyriad of signals by activating G protein-coupled receptors, tyrosine kinase receptors, and nonreceptor tyrosine kinases( 164 ). The increased levels of intracellularCa 2  and the phospholipid hydrolysis products that exist inrenal tubular cells postischemia provide a suitable environmentfor PKC activation. PKC isozymes and the receptor for activated C kinase are induced and activated post-ischemic injury invarious tissues including the kidney ( 173, 174 ). PKC-,- II, and - are induced and translocated to subcellular componentspostischemia in rat kidneys ( 173 ). Exposure ofLLC-PK 1 cells to oxidant injury induced expression of PKCisozymes. Activation of PKC is shown to protect the cells from oxidantinjury and subsequent necrotic cell death ( 175 ). Themechanisms by which PKC activation ameliorates necrotic cell death areyet to be addressed. Recent reports indicate a role for PKC inischemic preconditioning and heat shock-induced renalprotection ( 115, 147 ).. E( u, [( I, A, H. J
0 v9 ~7 X# {6 \/ E& \1 y6 ^
SAPK/JNK is a member of the MAPK family. SAPK transduces signals to thenucleus in response to cellular stresses such as inflammatory cytokines, ischemia, reversible ATP depletion, heat shock, and genotoxic stress. SAPK activity is markedly increased in the proximal and distal tubules after IRI ( 110, 178 ). Inhibition ofSAPK activity during ischemia ameliorates renal failure( 48 ). ERKs are another class of the MAPK family involvedin mitogenic response and cellular differentiation. ERK is alsoactivated post-renal injury, but its expression is localized to thickascending limbs in the inner stripe. Studies in several cellularsystems have suggested that JNK activation can be modulated by thecoexpression of ERKs. It is suggested that the activation of the ERKsin distal tubules during ischemic insult may protect the cellsfrom the injurious effects of JNK activation ( 47 ).. F/ s( d$ [) W, A' I1 Y0 m# A+ r5 m. v
: \- j9 P/ B! F
MOLECULAR MECHANISMS OF APOPTOSIS IN RENALISCHEMIA4 H2 t, Z$ B- [$ s' q9 k: s
& t$ T; d1 p/ w8 P. H: M: B
Apoptotic cell death has been documented in experimentalanimal models and humans post-renal ischemia, and inhibition ofapoptotic cell death is shown to ameliorate the injury andinflammation ( 42, 43 ). Several factors that can inducenecrotic cell death, including growth factor deprivation, loss ofcell-cell and cell-matrix interactions, cytotoxic stimuli, and celldeath receptor activation, are also suggested to trigger apoptoticcell death in renal ischemia ( 126 ). The severityof the injury caused by these factors and the degree of cellular ATPand/or GTP depletion play crucial roles in determining the mode of celldeath ( 126 ). A severe depletion of ATP favors necroticcell death whereas GTP depletion is shown to promote apoptotic celldeath ( 98, 126 ). The elucidation of various apoptoticpathways and the identification of the vast array of molecules thatregulate apoptosis provide new opportunities for investigatingthe mechanisms by which apoptotic cell death occurs in renal ischemia.- L+ r% m- ^+ }% ~3 t9 {* j0 U7 b

# e# F. r2 l- ]- b6 DDEPLETION OF GTP
0 Z. U# ?  F+ h; f5 h% a
5 z7 m/ {8 Y* R! ^5 m& y( v. fGTP and GTP-binding proteins play major roles in signaltransduction pathways, leading to cell growth, receptor activation, andcellular homeostasis. Selective depletion of intracellular guanylatesresults in inhibition of proliferation and induces apoptosis inpancreatic cells ( 122 ). It is speculated that the celldeath induced by GTP depletion might be modulated or mediated byGTP-binding proteins.
! {$ M4 z0 N2 D/ Z- G4 {- O
' `# G( N/ t9 \2 U9 O1 ZAmong the various factors contributing to ischemic injury, ATPdepletion has always been assumed to be the main culprit( 128 ). The role of other cellular nucleotide pools inischemic conditions was not investigated. Recent reportsindicate that depletion of GTP occurs concurrently with depletion ofATP in in vitro and in vivo models of ischemic renal injury( 44 ). Selective depletion of GTP induced apoptosisin renal tubular cells. Supplementation of guanosine to renal tubularcells subjected to chemical anoxia selectively enhanced GTP levelsclose to normal values and significantly reduced apoptotic celldeath ( 44 ). Administration of guanosine before inducementof ischemic renal injury improved renal functions andsignificantly reduced the number of cells undergoing apoptotic celldeath ( 98 ). The novel finding that manipulation of guanine nucleotide levels could modulate apoptotic cell death in renal ischemia offers new avenues for therapeutic intervention.+ b( t6 ?) c% i# k6 i; a" r! \

) i. L9 u) F8 h6 Q% j, j1 Y# R9 pTNF Receptor Family-Mediated Apoptosis
, |- c5 J! h! m* o- X3 m" |% \
$ T$ y( f- k5 q& S) X, v* ZMembers of the TNF family of receptors including CD95 (Fas),TNFR-1, and CD27 have been implicated in the pathogenesis of IRI( 50, 51, 61, 165, 176 ). TNF is a mediator of inflammation, which exerts its biological effects through its interaction with TNFR-1or -2. Induced expression of TNF occurs post-IRI in various organsincluding the kidney. Simulated ischemia in LLC-PK 1 cells induced TNF- mRNA expression and bioactivity. The production of TNF post-renal injury is triggered by the locally produced ROS,which activates the transcription factor NF- B through p38 MAP kinase( 51 ). Inhibition of p38 MAP kinase using specific inhibitors suppressed the expression of interleukin-1 and TNF- and reduced apoptotic cell death in mice and dogs that underwent ischemic renal injury. Neutralization of TNF- bioactivityusing antibodies to TNF- or inhibition of p38-MAP kinase( 146 ) or NF- B activity ( 145 ) preventedapoptosis in LLC-PK 1 cells subjected to simulated ischemia.
6 f! \  d" P3 n+ o: ]3 N$ k7 E1 ^, J5 Y
Fas is the best characterized TNF receptor that can triggerapoptosis in various cells including renal tubular epithelial cells ( 103, 172 ). Renal proximal tubular cells subjectedto ATP depletion or exposed to LPS underwent apoptosis and wasaccompanied by increased Fas protein expression ( 91, 102 ).That mice deficient for Fas are protected from ischemic renalinjury suggests an involvement of Fas-FasL system in renalischemia ( 165 ).
& \, {' m4 R0 C3 J9 g) I
2 S, j. Q& j- {2 ^Another member of the TNFR family implicated in inducingapoptosis post-ischemic renal injury is CD27. CD27 andits death domain-containing binding partner Siva are induced at sitesof apoptosis in tubular cells post-renal injury( 176 ). Hypoxic injury in LLC-PK 1 cells inducedthe expression of both CD27 and Siva. Transient transfection of Siva inLLC-PK 1 cells induced 100% apoptotic cell death intransfected cells. The role of CD27-mediated cell death post-renalinjury is under investigation.5 x3 X# ^$ g2 p
# d# |& U, ]% p& J
Caspases( ^8 }  t% u- ?3 Z! q. F
+ y4 w- K2 l- e9 v2 m
Several studies have documented caspase activation after IRI inthe kidney and post-hypoxic injury in renal PTC. The expression ofcaspases-1, -2, -3, -6, -7, -8, and -9 has been characterized in ratkidneys at the mRNA level ( 95 ). The expression andactivity of caspases-1, -2, and -6 are altered in kidneys post-IRI( 96 ). LLC-PK 1 and Madin-Darby canine kidney(MDCK) cells subjected to chemical hypoxia underwent apoptosiswith a marked increase in activation of caspases-3 and -8 ( 55 ). The activation of caspase-3 is accompanied by Baxtranslocation from cytosol to mitochondria and cytochrome c release from mitochondria ( 196, 197 ). Inhibition ofcaspase activity protected the cells from undergoing apoptotic cell death.
  ~9 Z7 F: z0 V8 y- a7 ~0 ]
+ S& m6 S( {7 h2 z$ F3 F+ wInhibition of caspases using a pancaspase inhibitor is shown to protectkidneys from ischemic injury. The pancaspase inhibitor protectsagainst ischemic ARF in mice by inhibition of apoptosis and subsequent inflammation ( 43 ). The results from thesestudies clearly demonstrate a role for caspases in IRI. However, therole of individual caspases contributing to the injury and inflammation post-renal injury cannot be discriminated from these studies because nonspecific caspase inhibitors were utilized. The availability ofspecific inhibitors of individual caspases will provide better clues asto the functions of individual caspases in renal IRI. Induction of IRIin mice deficient for caspase-1 by two different groups furnishedcontrasting results. Results from one study indicated thatcaspase-deficient mice underwent less severe injury than theirwild-type counterparts and that this was due to impaired interleukin-18activation ( 148 ), whereas a second group found no changesin the severity of the injury between control groups andcaspase-1-deficient mice ( 41 ).
. y- ^' x$ p! S( n, F8 U1 b; A8 S9 c  w9 _* U" p( C
Mitochondria and Bcl-2 Family Members7 D1 P/ ?( N$ S6 g; i. D# f3 s1 [6 H+ t
* _1 E* {1 G5 U! ^/ s# N
Mitochondria participate in inducing apoptosis after IRIthrough multiple changes, including generation of oxygen free radicals, calcium translocations, altered permeability transitions, and releaseof cytochrome c, apoptogenic factors, and Bcl2 family members. Renal IRI in rats can induce mitochondrial swelling, ruptureof inner and outer membranes, and release of Bcl2 postinjury ( 17 ). A recent study investigated the proximate eventsthat lead to mitochondrial permeability transition and release ofcytochrome c after hypoxia/reoxygenation injury in kidneyproximal tubular cells ( 242 ). A persistent respiratorydefect occurs in complex I-dependent substrates during reoxygenationafter hypoxia, and this defect is associated with condensedmitochondrial configuration and incomplete recovery of mitochondrialmembrane potential. Amelioration of impaired substrate flux throughcomplex I and ATP generation by -ketoglutarate plus greatly improvedmitochondrial function and cellular recovery ( 242 ). Theidentification of these upstream pathways of anaerobic metabolism andthe possibility of metabolic manipulations to improve mitochondrialfunctions at an early stage may help to prevent irreversiblemitochondrial damage in renal ischemia.
, R& t% \: `4 i0 f5 {9 Q* c6 g5 N5 i4 a1 Y8 b) X$ y* `0 B
Ischemic renal injury is associated with a marked increase inthe expression of the antiapoptotic Bcl2 family of proteins, Bcl2,Bcl-X L and the apoptotic protein Bax, in distal tubules and moderate increases in the proximal tubules ( 12, 40 ).The marked upregulation of the antiapoptotic proteins in the distal tubules may tip the balance in favor of cell survival, and this imbalance may be involved in its adaptive resistance toischemic injury. It is suggested that this survival mechanismmay allow the cells to produce growth factors that may aid in theprotection and/or regeneration of the distal tubules by an autocrinemechanism and of the more vulnerable proximal tubules by a paracrinemechanism ( 68 )./ ]. e# I4 e# h

4 {" n+ }( }& G( y0 Z1 hThe relative expression of the Bcl2 family of proteins in distal andproximal tubules subjected to oxidant injury in vitro is similar tothat seen in in vivo. However, the expression of BclX L isdecreased in PTC and a translocation of BclX L from the cytosol to the mitochondria is observed in the surviving distal tubulecells. No change in the subcellular distribution of Bax was observed inthe surviving distal tubule cells, and it remained widely distributedin the cytosol. The expression of Bcl2 or Bax was also unchanged in PTCpost-oxidant injury. It is unclear if the translocation ofBclX L plays a role in its protection from the oxidativeinjury ( 40 ). In a separate study, proximal tubules subjected to ATP depletion induced by hypoxic injury or impaired oxidative phosphorylation are shown to translocate Bax from the cytosolto the mitochondria. It is suggested that Bax may form pores inthe mitochondrial outer membrane causing the release of cytochrome c from the mitochondrial intermembrane space and mayactivate apoptotic pathways ( 196 ).5 ?3 C" O. @8 M% P! r' j

% e- f5 }( N- o" N6 WGrowth Factors
% B5 i  I  p- [& {
- ^. `* ^) `0 vAdministration of growth factors pre- or postinjury to animalmodels of renal ischemia is shown to ameliorate the injury and enhance renal regeneration. The beneficial effects may be attributed totheir antiapoptotic, proliferative, and proangiogenic influences ( 74-77 ). In addition, they are shown to enhance GFRpostinjury possibly by enhancing NO production, increased local bloodflow ( 39, 54 ), and vasodilatation of renal microvessels injuxtamedullary nephrons ( 222 ).& x- Y9 C; Y8 f% ~: M( m" l  J6 f3 P
2 V; h3 }2 S) `6 G, j
Among the various growth factors, hepatocyte growth factor (HGF) is oneof the most potent renotropic growth factors ( 76, 150, 151, 236 ). After acute renal injury, the expression of the HGFreceptor c-met is exclusively induced in kidneys ( 132 ). HGF, when administered in its peptide form, is rapidly removed fromblood circulation by the liver and has a very short half-life. Recently, it was shown that intravenous administration of a naked plasmid encoding the HGF gene results in its expression for up to 6 days in the kidney ( 45 ). Intravenous administration of asingle dose of HGF plasmid DNA protected tubular epithelial cells fromboth apoptotic and necrotic forms of cell death after folicacid-induced renal injury. This novel gene-delivery system may help tocircumvent the difficulty of maintaining sustainable levels of thegrowth factor in the blood circulation and offers a novel therapeuticstrategy ( 45 ).- f& e2 ~" _5 J  N; `

9 ^$ Y- G0 [2 _' i$ h  B2 Z2 M0 FThe Inflammatory Cascade in Renal IRI
8 [2 w" A/ D0 o8 W+ `* U8 h4 }( @  V* i/ v
The inflammatory cascade of renal injury is initiated by ATPdepletion and is further exacerbated during reperfusion( 170 ). Several candidate systems that originate fromen4 Z, Y# H% e. m
          【参考文献】
. l; P: B! l* H5 k+ Z% X 1. Adams, JM,andCory S. The Bcl-2 protein family: arbiters of cell survival. Science 281:1322-1326,1998 .
) [: s2 w1 q$ G! O: G" n9 R* ^
( `1 p* [6 Q, N7 I* }" X3 w+ }5 L; O5 n# b$ I7 h: q9 L+ ^
, u& |9 _2 T" p5 R1 ^- j. N; ]( r# @3 b
2. Adams, JM,andCory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 26:61-66,2001  .; d9 C6 L0 a, e) V- C' m. c
' i# M! i6 D# v. X! {
2 e- I: b# p1 w6 E* D

9 ^; B7 H: k2 T! `4 l* j5 u: u3. Adrain, C,andMartin SJ. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci 26:390-397,2001  .4 n- D( E: V5 r- T6 x8 h* }
6 u" p" b$ }0 t0 A
" j3 L3 _; K4 K& T& f
) j% O: G6 I9 I; k$ a' ^# v. I6 U
4. Anderson, AJ,Stoltzner S,Lai F,Su J,andNixon RA. Morphological and biochemical assessment of DNA damage and apoptosis in Down syndrome and Alzheimer disease, and effect of postmortem tissue archival on TUNEL. Neurobiol Aging 21:511-524,2000  .
6 Y4 R* ?7 ^' Q' \% x0 p. g* _; Q: c7 Z" [
# I: N! N: i! s1 {4 X! D4 s1 Z

+ ]% W% F: }9 I$ x& r5. Arendshorst, WJ,Finn WF,andGottschalk CW. Micropuncture study of acute renal failure following temporary renal ischemia in the rat. Kidney Int Suppl 6:S100-S105,1976 .
8 t7 t; X1 i2 T, k1 F4 k% B! M% Z# K& ^/ m2 J% W9 ~! R

5 I$ q& e/ c! s" F0 |: s
9 @- D6 B7 }, U8 h6. Ashkenazi, A,andDixit VM. Death receptors: signaling and modulation. Science 281:1305-1308,1998 .
7 F2 x. J, Q( a( B/ c; V6 C  u
5 }: L$ i/ a& N$ g  N2 b0 ?+ n8 I; T+ ~1 T

9 L  L- r" Z5 ^6 b' N7. Avison, MJ,van Waarde A,Stromski ME,Gaudio K,andSiegel NJ. Metabolic alterations in the kidney during ischemic acute renal failure. Semin Nephrol 9:98-101,1989  .9 g1 X% h3 X+ p5 w# `

8 u, G5 W; q1 s" F% m* q: Y, ?  d6 h7 |# [: l
" ^* |5 o' T4 C  T) D3 k7 Q2 C
8. Azzarolo, AM,Wood RL,Mircheff AK,Richters A,Olsen E,Berkowitz M,Bachmann M,Huang ZM,Zolfagari R,andWarren DW. Androgen influence on lacrimal gland apoptosis, necrosis, and lymphocytic infiltration. Invest Ophthalmol Vis Sci 40:592-602,1999 .8 M% V0 ?) E5 r, {) V
( G- J! W1 k; Q
1 Z$ j1 o3 _/ z
; [" N2 o5 O0 m' o' K2 R- b; X
9. Barros, LF,Hermosilla T,andCastro J. Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A Mol Integr Physiol 130:401-409,2001 .0 s" Z3 B& U, {6 G1 y
* L0 X# B, V- S0 a: S( ~# w

. i( h- H2 I- J: B( t& w
0 k/ Q. w$ w  m; n% S2 w/ \10. Barros, LF,Stutzin A,Calixto A,Catalan M,Castro J,Hetz C,andHermosilla T. Nonselective cation channels as effectors of free radical-induced rat liver cell necrosis. Hepatology 33:114-122,2001  .
9 x  }6 ^, H) i2 }8 {0 T& @+ w0 O/ I" [' D' z, |5 v

" y4 Y- J8 F: I4 @% d" _" J5 B/ k" t' A" v! X8 g7 f9 H; u
11. Basile, DP,Donohoe D,Roethe K,andOsborn JL. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887-F899,2001 .
3 ]' r1 s0 K  p5 o  C8 t; R* ?( E* t- K3 y1 V& ~7 P
  j7 J( ^) n% G
& H5 i5 T2 B0 i$ n0 Y1 w/ b
12. Basile, DP,Liapis H,andHammerman MR. Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am J Physiol Renal Physiol 272:F640-F647,1997 .
: j9 G9 X$ d3 q. W1 I! M* |) e( |, Q* f( r* V8 X
) [2 S) G, U/ f6 T9 \! }  X! `& B1 [

5 R0 C$ v: i7 }! V3 L13. Basnakian, AG,Ueda N,Kaushal GP,Mikhailova MV,andShah SV. DNase I-like endonuclease in rat kidney cortex that is activated during ischemia/reperfusion injury. J Am Soc Nephrol 13:1000-1007,2002 .& K4 m9 \" L, ^. H0 \4 ^
: @+ Z/ C' ^8 y! d; `" q; I. d
1 G: j" F. X% {7 U' K

1 q$ Q" Z0 z* H( w$ a14. Beattie, MS,Farooqui AA,andBresnahan JC. Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17:915-925,2000  .+ I* O$ K" r# B/ I# C; Q; c  Y

3 l1 i2 c  T- ?* `3 e
# z, @( {$ v: I" C1 m$ C4 [
. }1 ?9 a/ P/ l" Q15. Beeri, R,Symon Z,Brezis M,Ben-Sasson SA,Baehr PH,Rosen S,andZager RA. Rapid DNA fragmentation from hypoxia along the thick ascending limb of rat kidneys. Kidney Int 47:1806-1810,1995  .
/ J7 \8 u! H- ^  y/ @
' V* L5 v5 O1 {1 T/ B. [9 B8 _7 W/ A+ M# T/ y1 C
6 o( z, ~2 a( f8 \8 x4 R
16. Bellamy, CO,Malcomson RD,Harrison DJ,andWyllie AH. Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol 6:3-16,1995  .9 Q% @) X; }1 R' B: d! _2 ^5 q

1 i7 ~; Z  o' V: s5 C
. R6 V1 p4 a% w  t7 z+ h( x- G. {# X, G2 z- ^% {
17. Benitez-Bribiesca, L,Gomez-Camarillo M,Castellanos-Juarez E,Mravko E,andSanchez-Suarez P. Morphologic, biochemical and molecular mitochondrial changes during reperfusion phase following brief renal ischemia. Ann NY Acad Sci 926:165-179,2000 .
% a) W4 z" u7 g( K& {6 j+ q! R" r. ]4 b! g! h

+ ]: A4 R  W0 l% o$ y
/ {: Q3 o. V! x8 H+ I9 V18. Berridge, MJ,Lipp P,andBootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11-21,2000  .
( a' }6 F+ _2 W9 ?! J: I- j" T# J& f
4 m7 I: @/ s1 o! Q9 B

4 v9 k# _: C7 b, d3 ?% d; Z1 t& a7 B: g% J19. Bonventre, JV. Calcium in renal cells. Modulation of calcium-dependent activation of phospholipase A 2. Environ Health Perspect 84:155-162,1990  .. w. a  z4 J* p, S
$ n/ w0 ]; F. l7 h

4 R& g4 Q5 X% F2 O0 K+ [1 Y1 |0 V) |3 `- d5 [' a+ d, B
20. Bonventre, JV. Mechanisms of ischemic acute renal failure. Kidney Int 43:1160-1178,1993  .3 }; c% E/ W6 T8 E( d. d4 `( u

6 I  p+ m# T6 t, u( ?$ Z6 `( z3 N6 W( O! n5 o% ]
% `8 ~; J0 ]  \
21. Bonventre, JV. Mediators of ischemic renal injury. Annu Rev Med 39:531-544,1988  ./ X( p8 E6 p4 w8 u
. o9 i: u  {+ Y8 q5 i
3 p1 \' U( O- e

% D  C5 {# ]) g5 J9 z% M) ]2 i22. Bonventre, JV,andColvin RB. Adhesion molecules in renal disease. Curr Opin Nephrol Hypertens 5:254-261,1996 .% W& C7 N# ^* `' q& x0 O1 w
' U7 ?8 H7 l/ O5 y+ u- i0 v

+ u4 T# N9 V! H  v7 r* `9 q% J
23. Brodsky, SV,Yamamoto T,Tada T,Kim B,Chen J,Kajiya F,andGoligorsky MS. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282:F1140-F1149,2002 .- D4 O  B4 V5 T, U7 y
* ^# f8 C" z5 b. `- T, r% a9 Y

* X2 p) V1 m$ Y) W8 F6 N, }0 }3 `+ d1 [& K7 q4 y
24. Brown, S,Heinisch I,Ross E,Shaw K,Buckley CD,andSavill J. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418:200-203,2002 ./ A: H  @5 o6 m$ A

/ i; Z% g5 q; h) r" R8 p
2 c3 q. g  ~% S5 S. d8 I& C, [% ^& N+ q6 l% y: L$ s0 T* c
25. Buja, LM,Eigenbrodt ML,andEigenbrodt EH. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med 117:1208-1214,1993  .  b$ v. @/ g9 S' i4 M1 B  X* {
1 s2 w3 Q4 H) r/ ]  H

9 O' M$ q9 F- \  g
, C3 H6 n) C. @0 V26. Butcher, EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67:1033-1036,1991  .
' m) X/ y5 \& p. f& \
( d" l- \! T' ~) c* {; H
! A( v6 g' Y0 k( c) V" ~' v! D4 k- A; w
27. Carini, R,Autelli R,Bellomo G,Dianzani MU,andAlbano E. Sodium-mediated cell swelling is associated with irreversible damage in isolated hepatocytes exposed to hypoxia or mitochondrial toxins. Biochem Biophys Res Commun 206:180-185,1995  .
) _9 S. o. R% E+ y& N1 s( T
& o. G  X0 e% w3 z4 k# N1 h+ B: |9 X) @
- j2 ?1 D3 ~0 {4 z' B! h
28. Carini, R,Bellomo G,Dianzani MU,andAlbano E. The operation of Na   /Ca 2  exchanger prevents intracellular Ca 2  overload and hepatocyte killing following iron-induced lipid peroxidation. Biochem Biophys Res Commun 208:813-818,1995  ." }9 a8 p/ \1 A# l3 p

0 b. y8 z' E7 a! l7 s
6 C% ^# V0 @' c2 ]  S5 o9 e7 A0 W6 g; q! y) A  j2 i# ]
29. Carmago, S,Shah SV,andWalker PD. Meprin, a brush-border enzyme, plays an important role in hypoxic/ischemic acute renal tubular injury in rats. Kidney Int 61:959-966,2002  ./ u* F( C  W# E2 Z

7 d  }  x( p7 F1 @- |9 x; R4 G8 b8 E' j) h; W% q3 ^% @

/ R, H& ?: T! k% S# ?" c5 r30. Chalmers-Redman, R,Fraser A,Ju W,Wadia J,Tatton N,andTatton W. Mechanisms of nerve cell death: apoptosis or necrosis after cerebral ischaemia. Int Rev Neurobiol 40:1-25,1997  .5 P4 H* I( {% l# I( r: {

! R( L" x. Q  y: S( C4 G* d1 D* r3 T

( p' K  h1 B) y% ^$ ~. i31. Chamoun, F,Burne M,O'Donnell M,andRabb H. Pathophysiologic role of selectins and their ligands in ischemia reperfusion injury. Front Biosci 5:E103-E109,2000  .9 b3 X6 M% `2 `) W  T( a2 x
: R6 O, M7 A1 u/ z2 p

& |7 M! f0 X' R) s) o
8 ?% a2 }1 _& n32. Chao, DT,andKorsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395-419,1998  .$ Z5 }$ v' D3 S) m) x$ n0 e

0 {' b& M' F0 Z2 R) G6 Y8 Y
* \6 Q) v- X  J+ h0 P+ w8 ~  w, m1 B2 U2 s
33. Cheng, Y,Deshmukh M,D'Costa A,Demaro JA,Gidday JM,Shah A,Sun Y,Jacquin MF,Johnson EM,andHoltzman DM. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 101:1992-1999,1998  .
: _# [8 y5 \1 m% X) W. D% Q8 _- g/ K* h8 J. G4 u; [# M3 [
" H$ k5 w5 q2 W
& h- P! K1 _7 K! ^; `6 X  B8 g
34. Chiao, H,Kohda Y,McLeroy P,Craig L,Housini I,andStar R. Alpha-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J Clin Invest 99:1165-1172,1997  .7 o% @1 h% H4 F; _* `+ G

$ X2 \1 ^& U$ ?9 U/ l- d) V9 [/ D& J  p8 k3 w5 P" }. k

% z9 V% U) {( Z$ ]0 J35. Cohen, GM,Sun XM,Snowden RT,Dinsdale D,andSkilleter DN. Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286:331-334,1992  .$ y3 [( ~5 V* z
+ F' S/ D" M6 C' U* ^( x. x

7 Z% M' Z# d: ?8 t& P1 l/ l
9 ^; k4 Z' ^3 H* Z36. Conger, J,Robinette J,Villar A,Raij L,andShultz P. Increased nitric oxide synthase activity despite lack of response to endothelium-dependent vasodilators in postischemic acute renal failure in rats. J Clin Invest 96:631-638,1995  .
, i5 ~5 n, o* t7 h
+ y5 X9 C# C; A' ^
( _( c/ h$ \' {: e1 H1 B2 @2 w. N$ \. b6 h, x$ m8 L& u8 V
37. Conger, JD,andWeil JV. Abnormal vascular function following ischemia-reperfusion injury. J Investig Med 43:431-442,1995  .
$ v  ~0 c6 R) i8 Z* C* X* _2 E4 v& i; U9 R4 W$ j

  H9 _: r: ]# l2 O4 ]0 r! b4 ?1 R6 e! I6 J. d" Y+ ^
38. Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233-249,1999  .
$ n# o& F, u+ d, z3 G/ h* Y8 q3 y0 U6 @
" b! b9 L$ J' \& D! v- _

( _# F) j4 |6 c; a) p39. Cuevas, P,Martinez-Coso V,Fu X,Orte L,Reimers D,Gimenez-Gallego G,Forssmann WG,andSaenz De Tejada I. Fibroblast growth factor protects the kidney against ischemia- reperfusion injury. Eur J Med Res 4:403-410,1999 .
, ~0 e2 P1 y- P, B& w% F. R8 Z. s# {

# I9 w& f4 m) V3 R% g, r! ]0 }; X. S' i; Z) i
40. Cuttle, L,Zhang XJ,Endre ZH,Winterford C,andGobe GC. Bcl-X(L) translocation in renal tubular epithelial cells in vitro protects distal cells from oxidative stress. Kidney Int 59:1779-1788,2001  .
1 n" [' z& D6 F3 W
6 h: I5 x- a% \& h
8 e% c+ E& I, T9 A7 s5 `5 [7 ?9 N2 x, Q; b
41. Daemen, MA,Denecker G,van't Veer C,Wolfs TG,Vandenabeele P,andBuurman WA. Activated caspase-1 is not a central mediator of inflammation in the course of ischemia-reperfusion. Transplantation 71:778-784,2001  .2 _1 z& e4 f8 e. Q2 V1 U
+ c) E5 S' K5 m" P/ i1 o1 K
8 `- r+ k6 I, v3 _  L( Q' l

) p! ]# Y6 L0 `9 Y3 b0 e42. Daemen, MA,de Vries B,andBuurman WA. Apoptosis and inflammation in renal reperfusion injury. Transplantation 73:1693-1700,2002  .
4 m8 |# e: P: {, |2 v
. G7 L3 y4 G2 C, K- f& @
: Z. ~% C. W* n+ L4 |' y
0 p7 p  K' n% c$ o0 O43. Daemen, MA,van 't Veer C,Denecker G,Heemskerk VH,Wolfs TG,Clauss M,Vandenabeele P,andBuurman WA. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 104:541-549,1999  .
9 e* s& L# C" o1 B: M' t+ c! z" Z$ f- f  h, ~4 U

8 K: @  e  P* F5 {* H2 S# E% c$ m$ J! P' y0 M# ?- O
44. Dagher, P. Modeling ischemia in vitro: selective depletion of adenine and guanine nucleotide pools. Am J Physiol Cell Physiol 279:C1270-C1277,2000 .
& J7 o& s% F$ ^- U, T- v* H/ n
/ v& k  L0 }! N4 u# R
5 N  W2 D: w+ F3 K  k, a" k
3 K0 U, A* b0 G8 R* b45. Dai, C,Yang J,andLiu Y. Single injection of naked plasmid encoding hepatocyte growth factor prevents cell death and ameliorates acute renal failure in mice. J Am Soc Nephrol 13:411-422,2002 .
2 [9 s) B4 n3 ~5 ]. y" X! I# [* L* p
5 ?6 g; q& N% w( }) a& {% Z: Y2 S' q) `# n4 c2 F" F1 E/ ~

. C" H1 y+ m+ e6 f" U+ p46. De Broe, ME. Apoptosis in acute renal failure. Nephrol Dial Transplant 16:23-26,2001 ., U5 s! y9 E) z% i# ?* n6 M

+ W0 ^5 s, @& M7 }
' Z$ R" a* }; X$ t# q0 F% Z9 k  W: Y* E, c! ]6 ^
47. DiMari, JF,Davis R,andSafirstein RL. MAPK activation determines renal epithelial cell survival during oxidative injury. Am J Physiol Renal Physiol 277:F195-F203,1999 .
( A1 t% j* L6 c% P* g' e3 }  w$ @2 I) t* R
6 A2 t- h4 u! p( I  M, U

9 B$ G' Q, ]2 u8 l& N  E- u48. DiMari, J,Megyesi J,Udvarhelyi N,Price P,Davis R,andSafirstein R. N-acetyl cysteine ameliorates ischemic renal failure. Am J Physiol Renal Physiol 272:F292-F298,1997 .0 x, t# C+ D2 O6 N8 R% l7 L% M7 Y" ^9 a2 y
$ N( u  {, u, u: {
* H! b$ }8 M  M. Y: e$ i; U" P7 U
* h7 L# a; H9 p7 c3 ?( |& Z7 Z+ |
49. Dong, Z,Saikumar P,Weinberg JM,andVenkatachalam MA. Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol 151:1205-1213,1997 ., u. K$ f% `; P" g+ k1 S( V

3 x6 M+ x, ]; i7 N. Q; {! V6 _
5 P- i0 A8 z& v' u" T+ B1 p) t' G
50. Donnahoo, K,Meldrum D,Shenkar R,Chung C,Abraham E,andHarken A. Early renal ischemia, with or without reperfusion, activates NF- B and increases TNF- bioactivity in the kidney. J Urol 163:1328-1332,2000  .3 q, C; d* i$ M9 O, R
' r6 @/ I+ j6 Y5 v4 S5 J+ R' K  t
( }% v, w( @: ?* _. ~
8 I# A; @! Y( ~# ~. v# N8 v
51. Donnahoo, K,Shames B,Harken A,andMeldrum D. Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury. J Urol 162:196-203,1999  .
- f9 o9 h& Y* a- a# A; T
& l, @- q( U+ g
: E; N! S' r7 [6 q, }/ q. `  s' |3 |4 [! A
52. Du, C,Fang M,Li Y,Li L,andWang X. Smac, a mitochondrial protein that promotes cytochrome c -dependent caspase activation by eliminating IAP inhibition. Cell 102:33-42,2000  .
! Q6 h% x* Y) w; c
0 K8 G+ u6 X! [4 K  e$ J% t+ F; h; l4 R& d0 M  J7 @$ g

, S3 g+ F% Q5 c+ R53. Edelstein, CL,Ling H,andSchrier RW. The nature of renal cell injury. Kidney Int 51:1341-1351,1997  .: K% |* Q& Z( t7 Q. k: @# `8 u5 |" y

% p/ x7 O' s4 m% H) r. P2 J  z- a9 z" D8 n2 Y
/ v+ w) m; Y5 t/ a0 B
54. Edelstein, CL,Ling H,Wangsiripaisan A,andSchrier RW. Emerging therapies for acute renal failure. Am J Kidney Dis 30:S89-S95,1997  .5 j7 h' B7 |7 m4 x9 y7 o
- i/ A* ]$ R+ |

) S9 _+ G$ e+ ?6 g/ `+ A+ f. K4 z3 H9 W) T" \8 L1 P2 g
55. Edelstein, CL,Shi Y,andSchrier RW. Role of caspases in hypoxia-induced necrosis of rat renal proximal tubules. J Am Soc Nephrol 10:1940-1949,1999 .
1 B( ?& U: C0 J$ q. ^$ t
7 F- ~4 k1 }) ]1 k  X
! g' C- N8 m- D  s8 l' _! I; V( W+ e% F+ {3 C; ]. ~. o
56. Eliasson, MJ,Sampei K,Mandir AS,Hurn PD,Traystman RJ,Bao J,Pieper A,Wang ZQ,Dawson TM,Snyder SH,andDawson VL. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089-1095,1997  .  `1 j$ D. g% R

8 \1 b4 F& H# @1 O& Y8 E* c1 R5 J. V2 r- j4 Y6 F' c5 f
$ G, b' ]- f9 I) G& e: A
57. Enari, M,Sakahira H,Yokoyama H,Okawa K,Iwamatsu A,andNagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43-50,1998 .. e/ G" l8 W: _) Z) l) B( G3 ?4 w

2 V) z. v; h+ T+ C/ ?4 }
$ _- m' i, \2 ?' T) k$ M" l
- T. e! l: Z! }58. Endres, M,Namura S,Shimizu-Sasamata M,Waeber C,Zhang L,Gomez-Isla T,Hyman BT,andMoskowitz MA. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 18:238-247,1998  .9 @, J, l0 _# C" P; F( h1 p
  X& s5 l" B/ {) {' j& A  J
" _2 }4 ^! T1 k& b: f
+ O) }7 m$ H' @9 [
59. Ermak, G,andDavies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713-721,2002  .
& S; t, [% r7 _! |: i) |
7 A# i; T2 ^5 o0 M: W  n5 S
& y9 f$ l* q) O3 m; r$ I( x' w* o" Q- F
60. Farber, JL,Chien KR,andMittnacht S, Jr. Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Pathol 102:271-281,1981 .
5 z" m( ^, O5 b- J7 c3 z: S% Y6 @2 Y% M  G6 B3 A% @
5 v( n3 ^! o. F+ m) Q) _0 h

  |7 P4 X, ~' Z- E61. Feldenberg, L,Thevananther S,del RM,de LM,andDevarajan P. Partial ATP depletion induces Fas- and caspase-mediated apoptosis in MDCK cells. Am J Physiol Renal Physiol 276:F837-F846,1999 .& O- `& N. ]. V
% N9 i+ A" b- W. N: e

" G) {5 b& a1 V! H/ a! G
1 l/ t2 S/ B) F0 o4 ]6 i62. Ferreira, CG,Epping M,Kruyt FA,andGiaccone G. Apoptosis: target of cancer therapy. Clin Cancer Res 8:2024-2034,2002 .& g' f6 b  ?, }1 A
6 Q& w+ _% F# v
- v' O  [! ?+ q' a; t! e

! r8 ^, k+ K/ {1 T63. Ferri, KF,andKroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255-E263,2001  .
* D2 q7 a5 `" z3 M! _: [" v8 B9 x7 y8 z, v  b' m* j" g6 C

0 e" x2 w9 _  C' ^/ U' f6 j  C
% v0 m3 a  |* N5 I+ p  D- |64. Filipovic, DM,Meng X,andReeves WB. Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK 1 cells. Am J Physiol Renal Physiol 277:F428-F436,1999 .) H3 P. f$ s% g. T" O1 }$ t# ]( Y. a8 Y
: I. R' E, r! F  R. L( j
3 d  `7 x) G# ?$ l$ N

  L7 j7 b) y, J9 S  X8 \+ m65. Finn, WF,Arendshorst WJ,andGottschalk CW. Pathogenesis of oliguria in acute renal failure. Circ Res 36:675-681,1975 .0 H4 U0 G# t3 B

" H% Z* f) G, w% L" {: ]' N5 q* e( d# T! h

% K  c; S: M2 T3 L66. Garcia-Calvo, M,Peterson EP,Leiting B,Ruel R,Nicholson DW,andThornberry NA. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608-32613,1998 .
) N6 D5 w. j+ g/ C7 |% I+ Z2 w1 R- _

& j! c. u6 }9 [) q  z) K5 |
- V, `5 [9 A, w/ R: V! ]67. Glucksmann, A. Cell deaths in normal vertebrate ontogeny. Biol Rev 26:59-86,1951 .
/ E& V8 V& R3 ^0 Y8 E* _4 D3 `; L7 w1 E) A8 q6 p
0 Z% V* e* {5 @2 i. L
, g! z: x' w& G$ Q8 Q! u2 w/ r& J' W
68. Gobe, G,Zhang X,Cuttle L,Pat B,Willgoss D,Hancock J,Barnard R,andEndre R. Bcl-2 genes and growth factors in the pathology of ischaemic acute renal failure. Immunol Cell Biol 77:279-286,1999 .  }$ d0 D& Q0 O* g1 I) c

  }! G5 F4 b/ E2 x
# G) @1 S( k- F0 Y# \
+ X0 s9 D& i3 Y69. Goligorsky, MS,andNoiri E. Duality of nitric oxide in acute renal injury. Semin Nephrol 19:263-271,1999  .
- B2 p+ _, Z. w1 x: c  P" F# A& e& A$ F4 m) [/ T7 `* q
: E9 K7 m4 }( c

8 i" N) n3 q7 V3 W70. Gross, A,Yin XM,Wang K,Wei MC,Jockel J,Milliman C,Erdjument-Bromage H,Tempst P,andKorsmeyer SJ. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156-1163,1999 .# c" h- D+ z4 ?& \6 p
7 x6 p# i8 o& X7 I) t6 _

2 V- c6 T3 P( i! B5 D& c$ a/ V* z6 q) o0 p- X8 W  K  D( i
71. Guo, K,Searfoss G,Krolikowski D,Pagnoni M,Franks C,Clark K,Yu KT,Jaye M,andIvashchenko Y. Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8:367-376,2001  ." t. Y8 H2 z9 G+ h

* X' c, l; U( c. Z( ?# {# L3 g, `* x2 V; ~3 r

1 e" ^* H, j, n' a: y72. Ha, HC,andSnyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96:13978-13982,1999 .7 G2 n3 N2 h) d8 C3 J8 t
  j  v9 F; h$ G% P* L

% P7 u9 r6 S8 d& `6 |4 P6 r) C' c+ _) B
73. Hamburger, VRLM Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111:457-501,1975.
- ?9 A% M6 V$ k2 O# l+ t- Q7 U: O
- B% s* M0 o. \  |6 Y2 O2 S' S! f8 k7 S5 e1 a

6 M5 O$ m! h, Q1 m. u74. Hammerman, MR. Growth factors and apoptosis in acute renal injury. Curr Opin Nephrol Hypertens 7:419-424,1998  .
5 G4 `- ]5 O/ U; P, \$ k4 H1 O5 v( v% ~, [7 S1 a( F

& ]  y) E* P# Y6 D. V7 |
# z& U% Y# a5 I5 a; m75. Hammerman, MR. New treatments for acute renal failure: growth factors and beyond. Curr Opin Nephrol Hypertens 6:7-9,1997  .4 V8 Q0 }+ U  l! F3 w
6 I& e3 D( O. \4 q( ]% L

6 [3 ?# ~3 K# B+ m* T& D0 ?! }  `) U. O7 }, T( Z7 e
76. Hammerman, MR,andMiller SB. Growth factor gene expression in tubular epithelial injury. Curr Opin Nephrol Hypertens 4:258-262,1995 .# y, w7 @( y% Y- J: R

5 J7 v5 [0 [4 n' ?& H/ O" [+ S0 r/ I8 c( e

& o+ X( S7 ?7 a77. Hammerman, MR,andMiller SB. Therapeutic use of growth factors in renal failure. J Am Soc Nephrol 5:1-11,1994 .
# i7 L3 u: w: u  x) `$ ^4 w/ g+ t1 @/ d

, d8 Z( N" }3 m
  j' T# {% A" ?2 Y6 t) q7 u78. Han, Z,Hendrickson EA,Bremner TA,andWyche JH. A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 272:13432-13436,1997 .) |; O, U/ J# m6 d+ N

2 s: \; B% N$ t: K9 v4 V( C
. A+ k% j, G5 |4 M. |( x& q6 o" g+ s
79. Hara, Y,Wakamori M,Ishii M,Maeno E,Nishida M,Yoshida T,Yamada H,Shimizu S,Mori E,Kudoh J,Shimizu N,Kurose H,Okada Y,Imoto K,andMori Y. LTRPC2 Ca 2  -permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163-173,2002  .9 k( _3 m! ~* t- U% Q9 _

" K( c+ w. _  H/ W/ t, Z, I% G* |% ^- I1 a" \' K' _# F) u. l/ E
" z" {' k3 u! i7 O. _
80. Harriman, JF,Waters-Williams S,Chu DL,Powers JC,andSchnellmann RG. Efficacy of novel calpain inhibitors in preventing renal cell death. J Pharmacol Exp Ther 294:1083-1087,2000 .
  L! ?% U- p( P. _5 x. E% O2 z
  C/ M8 I! O  P6 `2 t
" `" O+ Q6 e+ @+ P* R$ @8 n  N8 K. |4 L/ q5 ]
81. Haunstetter, A,andIzumo S. Toward antiapoptosis as a new treatment modality. Circ Res 86:371-376,2000 .- H5 q* \% ~9 l4 I5 g' W9 W& o( d

+ c4 ^9 d2 d- y* P& T% T% z* e1 j( y

: ?6 B9 y+ B! v) n9 i1 w- L8 G" y. b7 _  h82. Hengartner, MO. The biochemistry of apoptosis. Nature 407:770-776,2000 .
$ `& ~- U/ N- H7 I+ h: {! K' [# c- O. t( N) x* {* j& r  v  z

1 W- |3 C) I% L2 \7 ?/ x3 D) Y1 T3 n/ E3 F7 s. U! Z
83. Herson, PS,andAshford ML. Activation of a novel non-selective cation channel by alloxan and H 2 O 2 in the rat insulin-secreting cell line CRI-G1. J Physiol 501:59-66,1997 .. J5 O: |" j0 z) S  H0 n$ @( Z

; O* Z# {* T9 t, l  N" l$ ]. u  s, ?1 Z- f0 k3 r$ `
# y0 E1 K$ X  H* @. t& L
84. Herson, PS,Lee K,Pinnock RD,Hughes J,andAshford ML. Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J Biol Chem 274:833-841,1999 .
- u' Z, q5 i( r9 q1 |, u* |4 r& w/ \3 V( d/ s% I- O! u

! H) ^, [9 J6 W: `3 g. O- T! d! r) `" R6 C! B* E' X) [
85. Horvitz, HR,Shaham S,andHengartner MO. The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 59:377-385,1994  .
9 `& u" _3 P0 |) u4 ]7 O1 r& ^7 m( ^: v& O5 {8 F' P  c
. u+ b5 ?8 ~, R
9 F0 Y) N! U0 t9 s9 k
86. Huang, DC,andStrasser A. BH3-only proteins-essential initiators of apoptotic cell death. Cell 103:839-842,2000  ., T- F" G& i7 I# N6 M3 T( Q5 x8 V

5 [/ m+ Z8 Y$ W# d7 K: c1 j3 S$ d7 I% H2 G) t3 Q$ k& d" X

9 v; v- h' ]0 r87. Hwang, SM,Lopez CA,Heck DE,Gardner CR,Laskin DL,Laskin JD,andDenhardt DT. Osteopontin inhibits induction of nitric oxide synthase gene expression by inflammatory mediators in mouse kidney epithelial cells. J Biol Chem 269:711-715,1994 .
0 Y6 A$ |3 x! o8 B. m# h% V4 I. I/ |' b. g7 |( h. E
4 \  B& n& e9 l" @" A

/ o6 ]& g8 _! h. f' R- [( V( ]# H3 W88. Irmler, M,Thome M,Hahne M,Schneider P,Hofmann K,Steiner V,Bodmer JL,Schroter M,Burns K,Mattmann C,Rimoldi D,French LE,andTschopp J. Inhibition of death receptor signals by cellular FLIP. Nature 388:190-195,1997 .3 y$ T$ f1 k2 S9 ~& E8 }7 H0 H
: O4 I$ {) A, J
, a1 S& r1 P. O0 q! R( n& m+ U

$ Q) {' @+ B6 t# q' [89. Iwata, M,Myerson D,Torok-Storb B,andZager RA. An evaluation of renal tubular DNA laddering in response to oxygen deprivation and oxidant injury. J Am Soc Nephrol 5:1307-1313,1994 .
' s( e& f5 {# d) u( z- W3 p  ~# F- B4 U5 B
0 x2 m' }" c3 b2 F$ T8 @; g8 K: W$ }
. e' m! e9 \7 U6 _
90. Jacobs, WR,Sgambati M,Gomez G,Vilaro P,Higdon M,Bell PD,andMandel LJ. Role of cytosolic Ca in renal tubule damage induced by anoxia. Am J Physiol Cell Physiol 260:C545-C554,1991 .* c6 R' q; N9 r; r! u* U$ w* D+ e
+ m- f  B# [' y- V5 G; p& _" w
) [7 w' y: u+ ]( P6 @1 R' Q( a

. K2 o- B; `6 G% o  @' H/ a2 [91. Jo, SK,Yun SY,Chang KH,Cha DR,Cho WY,Kim HK,andWon NH. -MSH decreases apoptosis in ischaemic acute renal failure in rats: possible mechanism of this beneficial effect. Nephrol Dial Transplant 16:1583-1591,2001 .
+ s; ~6 n' O0 T$ o) P: ^, [5 E+ m) W; B$ {# r" _, Y9 g
& G& s7 j' F8 o; n; {% I" I3 O# A2 E
2 @5 M" v6 o* ^6 z' m9 Q
92. Joza, N,Kroemer G,andPenninger JM. Genetic analysis of the mammalian cell death machinery. Trends Genet 18:142-149,2002  .# `* Z6 n( i, Z8 u; ]0 p2 w

0 m; f3 |) Z, N( q# q, G5 m
, }0 w. G- h5 e* ], T; X$ E' m8 [/ g
93. Joza, N,Susin SA,Daugas E,Stanford WL,Cho SK,Li CY,Sasaki T,Elia AJ,Cheng HY,Ravagnan L,Ferri KF,Zamzami N,Wakeham A,Hakem R,Yoshida H,Kong YY,Mak TW,Zuniga-Pflucker JC,Kroemer G,andPenninger JM. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410:549-554,2001 .
7 i/ E2 k! s5 W0 i/ _) d2 k1 A+ D- h# m( `7 Y
8 _8 ^6 @( l, ]; p. V/ @

) D% x& e1 L5 H5 j" u4 k; n94. Kaufmann, SH,andHengartner MO. Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11:526-534,2001  .3 X. n3 m2 X2 S8 \& O( v
: E# j, [1 z8 K. o7 n7 c& {
" @" T% F+ Q" c3 Y4 |  `
& {6 l. T* Q6 q& F; B
95. Kaushal, GP,Singh AB,andShah SV. Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am J Physiol Renal Physiol 274:F587-F595,1998 .
: l, |' N8 ~8 L( M7 |! Z& s+ }. r
* F) R/ c/ _7 B1 T8 h' I) ]# @6 G8 [. {7 M' W1 C3 x% r4 [6 g
9 k3 Z! e5 ?$ e6 X& E7 a6 b7 e
96. Kaushal, GP,Ueda N,andShah SV. Role of caspases (ICE/CED 3 proteases) in DNA damage and cell death in response to a mitochondrial inhibitor, antimycin A. Kidney Int 52:438-445,1997  .
. g: T7 T2 Y' F5 c; U
# l2 Z1 Y1 h2 W
/ s; m% M1 |8 [. b" {. z# s3 z' d, `* ]9 M# @
97. Keane, RW,Kraydieh S,Lotocki G,Alonso OF,Aldana P,andDietrich WD. Apoptotic and antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood Flow Metab 21:1189-1198,2001  .
0 j" ], N! o  W$ O% x% J+ ]- q1 J  f9 X
$ G0 V5 j4 D' h  z
' O+ s& q, C; j
98. Kelly, K,Plotkin Z,andDagher P. Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J Clin Invest 108:1291-1298,2001  .
3 f+ Y# c8 W' ^* ^" j. m4 t. E" ]7 Y: S

8 @% P: X0 @5 ~3 ~1 u7 K
# ?! t& x6 {) s) j, V99. Kerr, JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13-20,1971  .
' \6 ~9 I+ Q) Z. ]5 l) E# H; M( H
; q! l3 R2 C7 I. k: B0 k. u7 W" B- v& U
* z6 a+ I) b! {2 T
100. Kerr, JF,Gobe GC,Winterford CM,andHarmon BV. Anatomical methods in cell death. Methods Cell Biol 46:1-27,1995  .
8 @% K  E8 D: i
4 h: ^4 V& F' s; v1 e
) A$ V* |/ Q3 a* F; m5 I3 }
1 H! h3 M5 u/ z4 J! r0 |3 }2 C! l, w101. Kerr, JF,Wyllie AH,andCurrie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239-257,1972  .
: w8 w( _' f5 t- f7 o; B, A- W6 n, ], o
* X3 d& c8 B5 |3 @  \9 E

0 u) Y' t+ ~& A, m) Y102. Khan, S,Cleveland RP,Koch CJ,andSchelling JR. Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. Lab Invest 79:1089-1099,1999  ." r3 H  L6 H; ~+ Q- h$ ~2 A

9 A3 P- [0 ?- x' _$ `
+ g6 z! |5 a0 Z; {1 L4 x, B' S/ s3 }1 T! O8 g+ d, ]
103. Khan, S,Koepke A,Jarad G,Schlessman K,Cleveland RP,Wang B,Konieczkowski M,andSchelling JR. Apoptosis and JNK activation are differentially regulated by Fas expression level in renal tubular epithelial cells. Kidney Int 60:65-76,2001  .. ?' q  r) V, |7 q  p7 d

5 c; b( V. q: Q4 h. Z
2 {7 z' R" I/ `; \- E' S& F7 W# |$ h0 M
104. Kim, SJ,Lim YT,Kim BS,Cho SI,Woo JS,Jung JS,andKim YK. Mechanism of reduced GFR in rabbits with ischemic acute renal failure. Ren Fail 22:129-141,2000  .* ^0 g3 E9 q- {1 @; S3 c

7 G6 p3 s2 G3 v, A+ \0 F6 @
- g# E9 C/ X* |, t, y7 S3 F  \/ j) m
105. Koliwad, SK,Elliott SJ,andKunze DL. Oxidized glutathione mediates cation channel activation in calf vascular endothelial cells during oxidant stress. J Physiol 495:37-49,1996 .
! l2 N; g" f# a1 w8 Q1 c1 Y
: z& m6 @' n6 }2 U5 P5 F' e4 o. u
& B$ V* O) I6 ~: @) @# a
5 @4 ]& E( I: l+ N7 b6 w106. Korsmeyer, SJ. Regulators of cell death. Trends Genet 11:101-105,1995  .; x. l) _4 k6 F2 G% L

8 M. D2 q% _, O3 y! J1 S, E' U2 ]& K9 V8 K: a( G0 N

6 H8 R' I( Z/ b# N6 E, m107. Kramer, AA,Postler G,Salhab KF,Mendez C,Carey LC,andRabb H. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int 55:2362-2367,1999  .
* Z7 d: n4 g4 y8 k5 s
: P3 E' s( f, Q7 a1 [$ h
% l" J7 w& x4 Q; E, K7 L; b) G2 V# w. C7 s: A
108. Kroemer, G,Dallaporta B,andResche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619-642,1998  ." Z' h( S1 Y" Q9 D2 `

( h; L, q* j* G+ @8 l* d6 s
( a  i. q; r8 H) q* I3 }
: V' }$ n/ M% w: E4 B  a109. Kroemer, G,andReed JC. Mitochondrial control of cell death. Nat Med 6:513-519,2000  .; r+ h: o6 m% F  S& ], @
( L; r2 [) Z& J
9 W1 h: |9 P4 A* g' Q$ B
+ A& e7 J* ]) h" A# l
110. Kunduzova, OR,Bianchi P,Pizzinat N,Escourrou G,Seguelas MH,Parini A,andCambon C. Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renal ischemia-reperfusion. FASEB J 16:1129-1131,2002 .
, Z6 v9 c4 n. c; {7 t4 d# j: H  F
3 A7 i$ b4 N0 @! t3 ?* f
6 h) Z: L% q' o4 B+ B  N
, e- g" ]- S  ]$ C1 ]( E& j! w111. Kwon, O,Phillips CL,andMolitoris BA. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 282:F1012-F1019,2002 .
6 k: u9 G- [0 q1 M- J! O
- _6 b( t& s- a* w* w) ^1 e( ?2 B. T: \$ L6 f& i3 P6 |
: ^6 m* n& C9 p8 N! R
112. Laiho, KU,Shelburne JD,andTrump BF. Observations on cell volume, ultrastructure, mitochondrial conformation and vital-dye uptake in Ehrlich ascites tumor cells. Effects of inhibiting energy production and function of the plasma membrane. Am J Pathol 65:203-230,1971  .4 l3 Z; g2 O2 ], M/ o6 o* {

) Y. |/ A8 i8 C# r5 ~3 D
0 ~+ u$ I: K; s' L* X# K8 E: S' n& x5 Y4 a/ e
113. Lam, TT. The effect of 3-aminobenzamide, an inhibitor of poly-ADP-ribose polymerase, on ischemia/reperfusion damage in rat retina. Res Commun Mol Pathol Pharmacol 95:241-252,1997  .7 z* k% P8 j9 H( V( Q0 I  E

1 P' a4 O1 M. R
9 C$ a, w, q$ Q( A4 ?* Q" }$ c+ l( C% W: J! s  s
114. Lassus, P,Opitz-Araya X,andLazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352-1354,2002 .' {: n9 F, F% `& B
' W! m  y4 h, f# V  o
! [/ E! X$ e" @+ w. s7 e" r

8 n1 X; S* M8 g1 S3 k- i115. Lee, HT,andEmala CW. Protein kinase C and G i/o proteins are involved in adenosine- and ischemic preconditioning-mediated renal protection. J Am Soc Nephrol 12:233-240,2001 .
" b3 z% |3 U0 c0 S5 V2 H  r0 w! _2 l, d! L  `, y) Y: s8 E
- G/ n5 r. i: p% k' N5 g) e  Z7 t

; Q- ], x# F( o+ i$ [0 ?/ h0 W0 Y116. Leist, M,andJaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589-598,2001  .. y6 r. ?# F7 P' F9 J

0 i9 @* ^1 S* U( `8 Y& `
% J5 [! f0 l( P3 o. X) K' K. R
2 ]$ `. a3 W3 X+ m9 s117. Leist, M,Single B,Kunstle G,Volbracht C,Hentze H,andNicotera P. Apoptosis in the absence of poly-(ADP-ribose) polymerase. Biochem Biophys Res Commun 233:518-522,1997  .
% ^8 z* p) \2 t: g5 h1 t
" K, c2 p4 n4 O$ S) `9 ]7 Q* O% Q0 ~7 r
9 F" d9 x: U/ a0 z' P; u4 o- i5 C
118. Lemasters, JJV Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol Gastrointest Liver Physiol 276:G1-G6,1999 .
/ T* ~4 c5 ^( [. p. u" ^7 n
% F0 `' A; ]- b2 Z# F0 z
' w* o* P- J4 [/ u
9 W" f# N9 E$ Z, E# t( _( j* f  V119. Lemasters, JJ,Qian T,Bradham CA,Brenner DA,Cascio WE,Trost LC,Nishimura Y,Nieminen AL,andHerman B. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr 31:305-319,1999  .& m! z) N+ J$ Z' p. @0 ?2 h

" J2 W; `9 j, r3 r
$ @: w- \8 K! g% A' O
3 @7 q* r" U! ~. Q5 o) J6 c120. Levitsky, J,Gurell D,andFrishman WH. Sodium ion/hydrogen ion exchange inhibition: a new pharmacologic approach to myocardial ischemia and reperfusion injury. J Clin Pharmacol 38:887-897,1998 .5 M% M5 _* N* S

$ H1 x: G0 k% ^3 [1 m9 r+ u6 X0 A! W: @) `2 B+ L
& u& s8 ?/ d: Z# |. ]) q! l
121. Lewington, AJ,Padanilam BJ,Martin DR,andHammerman MR. Expression of CD44 in kidney after acute ischemic injury in rats. Am J Physiol Regul Integr Comp Physiol 278:R247-R254,2000 .
1 w2 G+ J! {6 f4 B* F- G7 k5 P* r( e) K

7 n( K+ P3 Q2 F7 P7 r$ R- G6 v/ M( I  V* _* }. R8 O4 F; {
122. Li, G,Segu VB,Rabaglia ME,Luo RH,Kowluru A,andMetz SA. Prolonged depletion of guanosine triphosphate induces death of insulin-secreting cells by apoptosis. Endocrinology 139:3752-3762,1998 .- y* q- |& B3 R' T' M( ^8 g

9 E, F" B% I$ ~0 Z
' `" C! }, n, K% S: C7 ?# \
9 A' J/ m- E% a5 I- Z% z9 x/ K123. Li, LY,Luo X,andWang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95-99,2001 .
- K( T, J7 P& l
, O2 o" t" m, K: a6 V3 Z. G3 m6 B& ?, \5 ]4 H/ t# Z2 u- o

) ~7 \4 x4 F" b4 r2 s124. Li, W,Srinivasula SM,Chai J,Li P,Wu JW,Zhang Z,Alnemri ES,andShi Y. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 9:436-441,2002  .
! j3 Q3 Z1 f  `/ \/ G; P/ `* m& C1 j" F# W9 x1 Y0 v& h6 h

6 ]. m- O( z- a
4 G5 T9 O1 }, g1 a125. Lieberthal, W. Biology of ischemic and toxic renal tubular cell injury: role of nitric oxide and the inflammatory response. Curr Opin Nephrol Hypertens 7:289-295,1998  .
% l* F5 I( d- X5 ?! I5 [9 L0 i- O% M: k

. O0 S  R6 v" L+ t
( v& s$ J' F. R3 \2 V126. Lieberthal, W,Koh J,andLevine J. Necrosis and apoptosis in acute renal failure. Semin Nephrol 18:505-518,1998  .
# M2 r* z; H% G; ^; b3 _; c1 A* h

" _+ Z# f$ I4 g  u/ f9 b+ o6 e0 E
127. Lieberthal, W,andLevine JS. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol Renal Fluid Electrolyte Physiol 271:F477-F488,1996 .4 `8 z8 L5 [$ v4 d1 M' B/ X$ c3 b" K* ]

$ V% b: k& ^* p3 G% `1 P
7 a1 C8 a7 e  V0 @
/ C) h4 {& c1 l, v: \. B. ?; Y! f. c128. Lieberthal, W,Menza SA,andLevine JS. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am J Physiol Renal Physiol 274:F315-F327,1998 .9 R& f; c0 f$ |. M& f& l' W

  ]( F6 S$ [5 ^% @
1 O/ x0 p, e$ v$ e
9 x- ^9 P( K6 ]- s+ Z! F129. Lieberthal, W,andNigam SK. Acute renal failure. I. Relative importance of proximal vs. distal tubular injury. Am J Physiol Renal Physiol 275:F623-F631,1998 .; W9 M, w6 K  g  b
1 D9 x2 B; J) a
% `9 [+ J+ {7 |- K3 }" N
% a. U  W7 ^; S
130. Liu, X,Rainey JJ,Harriman JF,andSchnellmann RG. Calpains mediate acute renal cell death: role of autolysis and translocation. Am J Physiol Renal Physiol 281:F728-F738,2001 .) C1 p) r3 ?8 x3 ]( @% c. l

2 k8 a- \4 q1 L3 ?/ J8 n. j9 b* _9 l6 J8 N1 C* B

6 Y% j0 P! F! E+ C131. Liu, X,Zou H,Slaughter C,andWang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175-184,1997  .8 N& k, d7 N$ m' T( m9 W. [
/ {& Z% H4 K, `4 w: R; p

) i; v: t, ^  r$ w7 b# F* I& v8 l9 I2 @$ x2 x- Y/ \$ ?! h5 e( l1 W
132. Liu, Y,Tolbert EM,Lin L,Thursby MA,Sun AM,Nakamura T,andDworkin LD. Up-regulation of hepatocyte growth factor receptor: an amplification and targeting mechanism for hepatocyte growth factor action in acute renal failure. Kidney Int 55:442-453,1999  .
. s; k- X1 Y& w9 C7 ~0 e7 t/ Y. Y

* ]* O5 G( {8 }- }% F% ], D& X
5 [1 w- i+ E2 U% E133. Lo, EH,Bosque-Hamilton P,andMeng W. Inhibition of poly(ADP-ribose) polymerase: reduction of ischemic injury and attenuation of N -methyl- D -aspartate-induced neurotransmitter dysregulation. Stroke 29:830-836,1998 ." p  B; q% |" S$ _( F, j! V- @
( d& d1 L# X" X! M: c, U* Z( O" a

% {) R& A. {2 Z+ l  N  T/ p
* f4 \" r: ]8 |3 q# O- }134. Loeffler, M,andKroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 256:19-26,2000  .6 V5 w% z0 m1 V$ K7 i/ S& O

3 Y+ ?! o, p9 G! ^. M5 Q( X5 r
$ a+ U2 D3 o7 j- l, K! {/ C6 F; }  n
5 m+ I  c- G  e5 D* Z  T135. Lorenzo, HK,Susin SA,Penninger J,andKroemer G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase- independent effector of cell death. Cell Death Differ 6:516-524,1999  .  I$ S6 @( @) ?3 J( G8 c- Z& |

% ]" T% v5 j# y/ s$ }
1 i, |+ E1 N: V% e" ~+ M/ G9 N) o" Q, G9 y- c
136. Los, M,Mozoluk M,Ferrari D,Stepczynska A,Stroh C,Renz A,Herceg Z,Wang ZQ,andSchulze-Osthoff K. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol Biol Cell 13:978-988,2002 .! w$ Z3 S) M7 m5 w5 F9 l4 b! @* W# A2 h
' u: B8 C9 s7 ^, N! o0 D

! r5 C( g- P0 k$ t5 O! v% e
, p5 @4 P/ J/ N$ U  @137. Maeno, E,Ishizaki Y,Kanaseki T,Hazama A,andOkada Y. Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487-9492,2000 .1 o2 k3 ~+ J& |% C: |: Z
3 [& S( f: O; I, l  m8 N& s3 L

0 P+ M9 K- c8 r
, B& D# k4 P% M; `138. Majno, G,andJoris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3-15,1995 .% q% F1 U6 z/ H/ e, D
% L# n# J8 ?3 m: `8 e# F

8 n" u' {" P* D+ ^+ X: G  z
: ~5 B, H6 X9 Y139. Mangili, F,Cigala C,andSantambrogio G. Staining apoptosis in paraffin sections. Advantages and limits. Anal Quant Cytol Histol 21:273-276,1999  .
' L/ }9 P8 i8 B. ^) u) b1 _9 ?. z! t) k6 t3 a3 Z. D

, o; `9 ^6 w6 N* i( F; M9 ~
) E8 ]. t& w, `' S8 s. C140. Martin, DR,Lewington AJ,Hammerman MR,andPadanilam BJ. Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats. Am J Physiol Regul Integr Comp Physiol 279:R1834-R1840,2000 .
7 A2 }, \6 U: _( c. t# W
& X( [# n" T: q# s# i# d& Q+ f# W; i0 u3 B- G+ N7 Z( d: o1 R

4 X7 n4 @$ X5 u; g5 P# {3 P& \9 D! J2 H141. Martin, LJ. Neuronal cell death in nervous system development, disease, and injury. Int J Mol Med 7:455-478,2001  .
; s  C* Y3 h5 B& W6 ^/ I. u+ e& \7 x; T& U2 l7 m

- B6 q; O: p6 J. v4 g6 p
( R) L: E9 O7 E( S% w) H142. Mason, J,Gutsche HU,Moore L,andMuller-Suur R. The early phase of experimental acute renal failure. IV. The diluting ability of the short loops of Henle. Pflügers Arch 379:11-18,1979  ., `* T5 j+ i" u) t

9 R# f1 `: U5 K/ g  j2 _) ^+ r. d3 l4 l/ }% J4 [8 B: V
  \0 ~8 v, W: h6 v4 E3 \$ k
143. Masson, M,Rolli V,Dantzer F,Trucco C,Schreiber V,Fribourg S,Molinete M,Ruf A,Miranda EA,Niedergang C,Hunting D,Gowans B,Schulz GE,Menissier de Murcia J,andde Murcia G. Poly(ADP-ribose) polymerase: structure-function relationship. Biochimie 77:456-461,1995 .
9 n* ?4 x8 i- }; J0 j$ V' v, g; o3 W! T: y" F: s# e" t" Y

4 z: c" T0 m, {7 t* T2 d3 z5 t5 s% `3 q& z5 I* B
144. Matthys, E,Patel Y,Kreisberg J,Stewart JH,andVenkatachalam M. Lipid alterations induced by renal ischemia: pathogenic factor in membrane damage. Kidney Int 26:153-161,1984  .2 O# p, A: V8 N1 u, I) v2 a" ~

9 a/ h% E" a5 t( z% {1 B, u1 j' x  m  F- j* D
4 _+ {7 q& \( N5 ]
145. Meldrum, KK,Hile K,Meldrum DR,Crone JA,Gearhart JP,andBurnett AL. Simulated ischemia induces renal tubular cell apoptosis through a nuclear factor-kappaB dependent mechanism. J Urol 168:248-252,2002  .
8 `4 G: J" Z7 r! w7 m/ _% F0 P/ C( s6 p1 C/ P! O

+ K9 s* O) v5 t0 f" h- o+ P; Y7 W0 W$ }
146. Meldrum, KK,Meldrum DR,Hile KL,Yerkes EB,Ayala A,Cain MP,Rink RC,Casale AJ,andKaefer MA. p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha- dependent apoptosis during simulated ischemia. Am J Physiol Cell Physiol 281:C563-C570,2001 .) {8 X" {; v4 a% w4 k6 B  I8 d
* M+ |3 A, p9 k. |% ~% _

. ~4 H; G% p5 ?5 |) `7 O, j
6 G8 O$ f( L2 I" `6 l, r0 x147. Meldrum, KK,Meldrum DR,Sezen SF,Crone JK,andBurnett AL. Heat shock prevents simulated ischemia-induced apoptosis in renal tubular cells via a PKC-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 281:R359-R364,2001 .
8 k2 v8 `3 s$ A$ D( ]# f$ z# o/ O; i$ Q3 c  M1 u
1 G. E. u% x' d

0 `" U' X! R, H& X/ d148. Melnikov, V,Ecder T,Fantuzzi G,Siegmund B,Lucia M,Dinarello C,Schrier R,andEdelstein C. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107:1145-1152,2001  .+ ?1 I5 c  ?) M  ~# W& u9 P! {
# ^! P4 a4 }( s2 ^$ X& \0 ^
: ]( E0 q3 o; y- d; G
6 N$ ~* U! G& c
149. Mergner, W,Jones RT,andTrump BJ. Cell Death: Mechanisms of Acute and Lethal Cell Injury. New York: Field and Wood, 1990.
, m+ p7 g$ j5 S. d  r: E+ Z
. ?1 o! T; t6 j( k, }, o
/ r, _/ u2 P8 k! i- q% @$ F
3 W' s8 T( T9 ]4 Q( `! T+ u150. Miller, SB,Martin DR,Kissane J,andHammerman MR. Hepatocyte growth factor accelerates recovery from acute ischemic renal injury in rats. Am J Physiol Renal Fluid Electrolyte Physiol 266:F129-F134,1994 .* n2 b( c" C; n+ ^$ w# `& U

/ w7 M; R: Q7 w/ ?% w% x4 f. d, G) \4 k( b* G% p4 ?
- |2 ?/ _% q( R* U5 Z
151. Miller, SB,Martin DR,Kissane J,andHammerman MR. Rat models for clinical use of insulin-like growth factor I in acute renal failure. Am J Physiol Renal Fluid Electrolyte Physiol 266:F949-F956,1994 .
6 B. ~, g) ], V) W( l6 K8 j
  p& d6 {( K/ l+ n) R* b' g. H8 b( c) R
) g# [0 F! ^! R% L
152. Mirakian, R,Nye K,Palazzo FF,Goode AW,andHammond LJ. Methods for detecting apoptosis in thyroid diseases. J Immunol Methods 265:161-175,2002  .
* {. U- K5 a  l  ]* ^  y- v; `9 @3 M; N
5 N. }7 V& m) V4 W/ L; d( ~

: j5 `& P8 A! |2 `( R; n4 {153. Molitoris, B. Cellular Basis of Ischemic Acute Renal Failure. New York: Churchill Livingstone, 1993.
( u# o$ X; }. [3 k3 y
7 o5 F. a  N; d9 O- @0 g& ?9 D* A
6 Z5 M2 v( D* s  x
' ^) r7 F) U/ L% u8 r5 ~$ N, P' x3 R154. Molitoris, BA. Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton. Am J Physiol Renal Fluid Electrolyte Physiol 260:F769-F778,1991 .. a( ]5 R; G0 B

( Z/ s$ ]4 l5 X, H3 J  G$ G7 M- c5 w  P% k/ z

$ c7 t1 |3 x" Y" X155. Molitoris, BA. Na   -K   -ATPase that redistributes to apical membrane during ATP depletion remains functional. Am J Physiol Renal Fluid Electrolyte Physiol 265:F693-F697,1993 .$ g4 K6 k  S  N" K

9 F: ?' B. D( H  M7 q' a" N3 Q) _+ x8 {% @" x

- j/ \' F" y) t( J156. Molitoris, BA. Putting the actin cytoskeleton into perspective: pathophysiology of ischemic alterations. Am J Physiol Renal Physiol 272:F430-F433,1997 .
9 ]8 Z4 B' b3 J
9 l3 G7 x6 @& t8 a) `9 k5 [
: H- T0 s" |+ e. ~7 I* |3 E4 l% U
/ [# R0 }6 ]* ^" A% a/ P8 D9 T& L157. Molitoris, BA,Geerdes A,andMcIntosh JR. Dissociation and redistribution of Na  ,K   -ATPase from its surface membrane actin cytoskeletal complex during cellular ATP depletion. J Clin Invest 88:462-469,1991  .
4 V2 l& H! I, W8 i. ~3 ]6 N  G. m) k) |! \

0 W1 k+ D% \8 P. J' z0 S, _; B+ L
8 ?# a5 T$ D6 @1 P158. Molitoris, BA,Sandoval R,andSutton TA. Endothelial injury and dysfunction in ischemic acute renal failure. Crit Care Med 30:S235-S240,2002  .
5 i* }, h+ N, S0 @
! f7 {9 \7 y3 d; E5 [, v: H0 y- U( n1 p7 g
/ ~" B+ D  Y& I9 \
159. Muzio, M,Stockwell BR,Stennicke HR,Salvesen GS,andDixit VM. An induced proximity model for caspase-8 activation. J Biol Chem 273:2926-2930,1998 .$ g. \5 q! u' m
+ {8 K1 t- Y& E
/ w* c' C- i$ R1 W
( |. W- t! H- V% W1 P
160. Nadler, MJ,Hermosura MC,Inabe K,Perraud AL,Zhu Q,Stokes AJ,Kurosaki T,Kinet JP,Penner R,Scharenberg AM,andFleig A. LTRPC7 is a Mg ATP-regulated divalent cation channel required for cell viability. Nature 411:590-595,2001 .
% R0 N$ J; D7 \* e, M) G9 s
6 \8 M# U5 k; E5 J
. n7 {2 |# Q. j' Z! G
8 M' a* y6 a& X! n7 G0 \' \161. Nagata, S. Apoptotic DNA fragmentation. Exp Cell Res 256:12-18,2000  .
7 ~4 F+ @6 O9 u9 N8 Y6 O
* O1 ]( ~" l- b0 `. U! K% `
: |2 u3 G' U8 N3 s4 w  r; s) |
4 V$ k4 x3 |. z; ~) S7 g8 }6 b6 H162. Nakano, K,andVousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683-694,2001  .: d2 C4 |: m% c0 w9 J
+ w/ k' Y( `2 H' i5 m

' w' q6 C+ m% E" b. o* ]' Y$ n  @. q
163. Nicholson, DW. From bench to clinic with apoptosis-based therapeutic agents. Nature 407:810-816,2000 .
4 x" Q0 P7 f. w! S8 T/ U6 a& ~3 H
7 L  f) R" J2 y: o
# X/ j' Q3 ~( G, S
7 x( T; S" C- f4 h164. Nishizuka, Y,andNakamura S. Lipid mediators and protein kinase C for intracellular signalling. Clin Exp Pharmacol Physiol Suppl 1:S202-S203,1995.
2 [7 l7 b# {& {+ t+ q0 w0 N; b3 K5 J6 x7 s$ _
  g8 d2 R  a, h  H: n. c
% h7 w5 R# p& M# P/ g
165. Nogae, S,Miyazaki M,Kobayashi N,Saito T,Abe K,Saito H,Nakane PK,Nakanishi Y,andKoji T. Induction of apoptosis in ischemia-reperfusion model of mouse kidney: possible involvement of Fas. J Am Soc Nephrol 9:620-631,1998 .
: F2 N" _: t0 }. ]% |
5 c9 v: @  p3 M6 V  h! s' \5 w3 K6 G( |; E( c! a1 f/ V: {
, j, _* G# w+ L7 H9 j
166. Noiri, E,Dickman K,Miller F,Romanov G,Romanov VI,Shaw R,Chambers AF,Rittling SR,Denhardt DT,andGoligorsky MS. Reduced tolerance to acute renal ischemia in mice with a targeted disruption of the osteopontin gene. Kidney Int 56:74-82,1999  .
2 v% b+ g# M8 \5 \" w$ k$ w+ R9 k3 n6 I

! B5 V% p4 v: o  c0 }+ \9 {! s* s# D
167. Noiri, E,Peresleni T,Miller F,andGoligorsky MS. In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest 97:2377-2383,1996  .' R+ J8 ?- R7 d9 \5 y4 M' n" H

) \1 k* w0 G& p: X  G' G5 O8 h4 [; ~. A; u/ E3 C9 D

* {1 e  Q/ u9 v! d; p7 Q: `168. Nomura, M,Shimizu S,Ito T,Narita M,Matsuda H,andTsujimoto Y. Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2. Cancer Res 59:5542-5548,1999 .
# {7 j9 B8 ^  n4 u! j4 a
3 @1 q3 h( q9 n1 C, d- a4 _7 ]+ ^% B- u4 Z' K& K5 z
( w; C0 E( b* T6 s4 {' w! w
169. Okada, Y,Maeno E,Shimizu T,Dezaki K,Wang J,andMorishima S. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3-16,2001 .( y+ P* H  J; [  e

4 F& @. u( |1 _3 v# m3 L
; B) y7 }# J! o
* T& \' w) v$ v. G) |170. Okusa, MD. The inflammatory cascade in acute ischemic renal failure. Nephron 90:133-138,2002  .
- O* e! l; v* _& i- C: f+ X3 I2 m; p; w" l! i6 B( P' T# b

% ]3 v9 _6 P8 w+ [  }0 z
; T  F; m# V( K. @3 |( K171. Orlov, SN,Thorin-Trescases N,Kotelevtsev SV,Tremblay J,andHamet P. Inversion of the intracellular Na   /K   ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3. J Biol Chem 274:16545-16552,1999 .
/ j2 u" J" L/ w
  x5 Q3 l% f6 m+ G) J; o# a& M; A0 C7 a8 {  v) ~" Q

$ Z3 c* _( x* _! x/ p) k172. Ortiz, A,Lorz C,andEgido J. The Fas ligand/Fas system in renal injury. Nephrol Dial Transplant 14:1831-1834,1999 .
4 g4 w' P; U- l" W5 ?2 F
5 e4 l7 {& D2 X# ?9 ^$ [; d* [
5 @$ Y! F" d' ]) p( ?" O, ^/ g7 H3 v8 x
173. Padanilam, BJ. Induction and subcellular localization of protein kinase C isozymes following renal ischemia. Kidney Int 59:1789-1797,2001  .
* Z+ o* \4 L, J# ^2 H8 d9 Q
  Z: t, ^+ o+ ]' U: b1 y
; j9 J8 o" U) M1 h5 Q8 h& P/ s( ]/ t. o3 Z# }* a0 g( a6 D" q8 Y
174. Padanilam, BJ,andHammerman MR. Ischemia-induced receptor for activated C kinase (RACK1) expression in rat kidneys. Am J Physiol Renal Physiol 272:F160-F166,1997 .* z3 o4 ^7 o9 H. o0 h4 T$ b$ s

+ p/ c9 H6 Q  G* C" {" c. p- C* m, y5 r: l% \/ |* U
+ b1 P- p! g7 q' I
175. Padanilam, BJ,andLewington AJ. Molecular mechanisms of cell death and regeneration in acute ischemic renal injury. Curr Opin Nephrol Hypertens 8:15-19,1999  .
( W$ g6 l7 b$ N
% h# M6 P. k; o' w. [) j- W; m% C" S
% Q* _8 q6 b) |
( p( O" e3 @+ a176. Padanilam, BJ,Lewington AJ,andHammerman MR. Expression of CD27 and ischemia/reperfusion-induced expression of its ligand Siva in rat kidneys. Kidney Int 54:1967-1975,1998  .
  Y( k) d: M3 ^  p- l8 X' |7 V; Y8 _
( Y: Z$ O+ J+ T. J7 y
) Q0 i$ E0 b# X6 j; T
177. Padanilam, BJ,Martin DR,andHammerman MR. Insulin-like growth factor I-enhanced renal expression of osteopontin after acute ischemic injury in rats. Endocrinology 137:2133-2140,1996 .
# [0 P+ A4 R5 p& m4 {8 J( ~' X' s

7 U3 D0 `- U2 Y. x2 L7 U1 t& F' l) M8 i# m0 a+ d
178. Park, KM,Kramers C,Vayssier-Taussat M,Chen A,andBonventre JV. Prevention of kidney ischemia/reperfusion-induced functional injury, MAPK and MAPK kinase activation, and inflammation by remote transient ureteral obstruction. J Biol Chem 277:2040-2049,2002 .
2 O: O( E# i9 C1 Z; n* C' D' v7 s5 y6 D" D* w: o9 ~

2 i( Y: d9 r" g& Y  X7 d8 a- n. u2 A6 B2 h7 Y6 d
179. Park, P,Haas M,Cunningham P,Bao L,Alexander J,andQuigg R. Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes. Am J Physiol Renal Physiol 282:F352-F357,2002 .
. W, t+ h) n$ o5 J# q
2 [7 p0 ~3 x; _1 U& t/ D" G. _( d3 V" p9 s& n6 A5 B

* p4 r; A' Y, {180. Parrish, J,Li L,Klotz K,Ledwich D,Wang X,andXue D. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412:90-94,2001 .
# V% c- |+ s) k, Z8 b9 D* f1 Q3 p9 w
  g2 T! h' B9 n4 g8 ~  U; h# f9 S# H4 c

  ]- z9 e1 H! w% j181. Peresleni, T,Noiri E,Bahou WF,andGoligorsky MS. Antisense oligodeoxynucleotides to inducible NO synthase rescue epithelial cells from oxidative stress injury. Am J Physiol Renal Fluid Electrolyte Physiol 270:F971-F977,1996 .
* H- I  q% Z" p- t# r8 r1 c$ W. f6 }

' X, t" u! k2 R5 G
0 B' ^; V! N7 v  F1 A182. Perraud, AL,Fleig A,Dunn CA,Bagley LA,Launay P,Schmitz C,Stokes AJ,Zhu Q,Bessman MJ,Penner R,Kinet JP,andScharenberg AM. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595-599,2001 .1 H' @6 t7 f/ H1 J2 V: o5 Y# t

& [: a/ q& y9 [7 {8 L, G; j$ D' w) j' J3 F0 s0 ~6 c
. Y! a  M( \. x
183. Pieper, AA,Brat DJ,Krug DK,Watkins CC,Gupta A,Blackshaw S,Verma A,Wang ZQ,andSnyder SH. Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci USA 96:3059-3064,1999 .; m) O: H4 @4 y2 B2 N% Q
" h3 q: A+ l$ w/ J5 B6 |; w7 h
3 `1 i' A  n6 X; w2 T! O

, k1 S/ m, J  o' N$ V184. Pieper, AA,Verma A,Zhang J,andSnyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 20:171-181,1999 .
* L0 p& b3 A, t( r
& x; y& _0 I7 ~- A
' b! W. c; Q& ]2 C& b3 x
: m4 Y; v" {) J$ ?185. Portilla, D. Role of fatty acid beta-oxidation and calcium-independent phospholipase A 2 in ischemic acute renal failure. Curr Opin Nephrol Hypertens 8:473-477,1999  .; L0 e; X$ y, Y. B/ _' B/ x

" m, [& M9 Z! {/ e9 ?6 n
; J: T2 ]# n& ]) w7 s- `' Q, w' {. u9 r7 u. x+ s0 q, w
186. Portilla, D,Shah SV,Lehman PA,andCreer MH. Role of cytosolic calcium-independent plasmalogen-selective phospholipase A2 in hypoxic injury to rabbit proximal tubules. J Clin Invest 93:1609-1615,1994  .
) y$ F% p' l7 W" V) E2 O4 J& J4 J# w# d5 w! c9 `1 }9 o1 {, J

! O* x, z6 G+ l
( \4 I- o3 r* E: w  z1 [. _187. Rabb, H,Daniels F,O'Donnell M,Haq M,Saba SR,Keane W,andTang WW. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 279:F525-F531,2000 .* N) u" T( D" k* A5 X  o0 Z* ~

$ P# L! V7 U  d3 a, \  r. ?
9 U) H( _2 `6 j/ N: I6 W6 p+ o# K8 }- D& t
188. Ranganath, RM,andNagashree NR. Role of programmed cell death in development. Int Rev Cytol 202:159-242,2001  ., v! R8 v5 b; ]

. \6 G4 Z: n4 u5 V( u, @
& e% {# y: q4 ?5 x/ y8 `% b- w# T) s3 n( P
189. Rao, L,Perez D,andWhite E. Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135:1441-1455,1996 .) w7 ~0 d$ c$ k

; |3 S6 g. \7 F( @6 A; y7 f9 m8 U9 l6 W# w( w' R% F$ a

7 z: E2 J) W- l( j& M& r/ z5 w( h190. Ravagnan, L,Gurbuxani S,Susin SA,Maisse C,Daugas E,Zamzami N,Mak T,Jaattela M,Penninger JM,Garrido C,andKroemer G. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839-843,2001  .
8 z: X9 O& J) b4 b& x  @0 n
: l8 N8 `5 t2 i1 i* q9 V8 G
" M; O$ T, b# p! `  b8 n
. d; q8 E% m5 [' o, K% x191. Reed, JC,andKroemer G. Mechanisms of mitochondrial membrane permeabilization (Abstract). Cell Death Differ 7:1145,2000  .: U( F2 g4 w  h. C

' c3 o$ j% p# T( ^1 b# o  k+ _8 l7 I' ]3 w- v

1 Z6 H) w8 @& r- n) W192. Rich, T,Allen RL,andWyllie AH. Defying death after DNA damage. Nature 407:777-783,2000 .) p4 E2 {" i6 f5 m! Y

. n# a+ F% e" V- K$ Z2 _# [* }: H, H4 X
/ Z7 U( W6 L) Y7 W# F1 Y
193. Roshal, M,Zhu Y,andPlanelles V. Apoptosis in AIDS. Apoptosis 6:103-116,2001  .* I5 b# |7 }; g4 t: c# F# K
2 h7 J  J" {2 F" x

' v/ j, W2 y( F( M' L( x6 v, U! Y0 i
194. Roy, S,andNicholson DW. Programmed cell-death regulation: basic mechanisms and therapeutic opportunities. American Association for Cancer Research Special Conference: Lake Tahoe, CA., USA, 27 February-2 March 2000. Mol Med Today 6:264-266,2000 .
0 N: E, u2 |7 Q9 [$ x4 i/ n& ]
& H4 }) S) ~2 I2 J( y% r
. R3 C/ e1 S8 J; M  {5 c
  q" O; ?! k# ~8 ?195. Rudel, T,andBokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276:1571-1574,1997 .$ s% P& ~& u' X  Q$ ]; a
2 V  t! h8 l5 `2 F% X! v& ?- K: v
& }: C( m/ n4 Y
' T' Y7 H0 `( s( [6 e6 f
196. Saikumar, P,Dong Z,Patel Y,Hall K,Hopfer U,Weinberg JM,andVenkatachalam MA. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene 17:3401-3415,1998  .3 y; e9 J7 \4 |

( i! P7 }3 e% Y7 z, Q% g/ `4 W
2 g; W8 f5 O% F( B. s
- Y: U8 {. S5 c  h. B$ Y3 g197. Saikumar, P,Dong Z,Weinberg JM,andVenkatachalam MA. Mechanisms of cell death in hypoxia/reoxygenation injury. Oncogene 17:3341-3349,1998  .
/ o! I- `( Z7 a! X- @# [: S
, B+ F% \7 ]  `( P3 a: W
! B& c5 p) D; S& T% {" {4 s- {, c; [7 I8 h. H: }
198. Sakahira, H,Takemura Y,andNagata S. Enzymatic active site of caspase-activated DNase (CAD) and its inhibition by inhibitor of CAD. Arch Biochem Biophys 388:91-99,2001  .
8 H; t/ J/ |! c' |; A/ N. l/ y- S

  b) P) `) p: F  `8 X
" w' R. i) f& t, o9 [199. Saunders, JW, Jr. Death in embryonic systems. Science 154:604-612,1966 .
6 `. o3 _, G3 ]. ?
* D5 R9 f4 T0 ~# C2 Z  a
; n: d5 A2 M0 G4 j* F) U/ u7 U
. W- X8 u- K6 k- }% E+ K200. Savill, J. Apoptosis and renal injury. Curr Opin Nephrol Hypertens 4:263-269,1995 .2 D% I  B9 {8 M& ?6 E

* u# @; X- _. Z1 V: C# Y/ J  {% P  T+ E6 _

: b' ?5 I! b  z5 \- S3 G201. Scaffidi, P,Misteli T,andBianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191-195,2002 .% ^0 {; w: T- J  I1 V$ t
) e8 z! n8 \4 G# T' w# f$ q

2 o/ t/ o$ S! q
, _: a; S: W# \+ y. f/ P202. Schnellmann, RG,andWilliams SW. Proteases in renal cell death: calpains mediate cell death produced by diverse toxicants. Ren Fail 20:679-686,1998  .
" {9 r. P% F1 w: s0 h* a8 n2 |7 K' o' u, a; B  D5 z5 ~

+ S8 A* x/ ~! k
1 \9 y8 A6 S, \203. Schulze-Osthoff, K,Bakker AC,Vanhaesebroeck B,Beyaert R,Jacob WA,andFiers W. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317-5323,1992 .! ^2 P# u0 `6 c" D- F
6 ?4 s; H. H: z- D4 t
' Q' g( L3 k5 v: p5 H

! B5 \; {8 |8 z204. Schumer, M,Colombel MC,Sawczuk IS,Gobe G,Connor J,O'Toole KM,Olsson CA,Wise GJ,andButtyan R. Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am J Pathol 140:831-838,1992 .
8 F! D2 o* {& r0 H7 o  C, x( \4 ?* _" t. @5 k

( \( i& P: b0 o6 ]6 F6 ~' b& X5 f: V
205. Schwarz, C,Gruber U,andOberbauer R. Pathophysiology of acute renal failure at the cellular level. Wien Klin Wochenschr 112:5-15,2000  .2 [' [# ?7 c/ ?' J
6 V& a% N+ y, K% t6 C) Y% l. J  t

3 i  z2 ]2 l, O: k4 n- i/ I7 y3 E# @$ `3 ~. j" x: n+ Z/ k
206. Sheridan, AM,andBonventre JV. Pathophysiology of ischemic acute renal failure. Contrib Nephrol 132:7-21,2001  .
- x5 l2 k( w- ^- m* `6 `6 ^; S9 S% Q
* E3 ^& }! l/ ^$ S8 J; d( ~- k% `4 I, Y) o) [: e* N# J; y  V/ d

2 ]1 E; J# l1 n1 x207. Shi, Y. A conserved tetrapeptide motif: potentiating apoptosis through IAP- binding. Cell Death Differ 9:93-95,2002  .$ _! X% n" T; B! t' R9 [! O& M

7 f9 Z, o5 f( E1 q$ j  p" {. Y) C7 I1 h

/ e6 n# _$ c6 G' M208. Shi, Y,Melnikov V,Schrier R,andEdelstein C. Downregulation of the calpain inhibitor protein calpastatin by caspases during renal ischemia-reperfusion. Am J Physiol Renal Physiol 279:F509-F517,2000 ., N/ }: b+ r: p3 H: k: L

- ]+ w0 g  y7 v. G2 {- m: `
2 L# i& u& o: J; d
* H- u# E0 I0 ?# D) B209. Shimizu, S,Narita M,andTsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483-487,1999 ." d; c/ S$ R" ~! T
1 q$ ]* v: c% H# n# v
/ k; E+ w3 s  o; a( B

! K( }! Z" S$ }( i$ Z- R: A5 r210. Smyth, PG,andBerman SA. Markers of apoptosis: methods for elucidating the mechanism of apoptotic cell death from the nervous system. Biotechniques 32:648-654,2002  .: a4 P, d, J- o$ x% {& g8 r
" ?, F7 h, L; ^+ U! U3 d1 Z

( T8 v* h- q2 T# x  B; _& B8 {( ~
. S$ W+ U! u; M6 |211. Somersan, S,andBhardwaj N. Tethering and tickling: a new role for the phosphatidylserine receptor. J Cell Biol 155:501-504,2001 .
( b3 c* Q' M! f- p) y$ {7 j+ N- M# B7 ^

6 o! N. i0 o% F) D4 p- x3 S8 o- a
212. Strasser, A,O'Connor L,andDixit VM. Apoptosis signaling. Annu Rev Biochem 69:217-245,2000  .: C% V+ W% w3 K+ M! D

9 Q' Y9 Q. Z6 N$ V! W  H- O
2 m: l1 m) Y9 K# m
  Z' n" N/ m8 O- q0 ]3 F213. Strasser, A,Puthalakath H,Bouillet P,Huang DC,O'Connor L,O'Reilly LA,Cullen L,Cory S,andAdams JM. The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann NY Acad Sci 917:541-548,2000 .
" }4 _& X- n9 F$ ~0 ~( ~/ M
$ U' o7 x& [# J0 e$ G9 F6 ?/ g
- p2 i" I- R) J4 S  F+ n
214. Stromski, ME,van Waarde A,Avison MJ,Thulin G,Gaudio KM,Kashgarian M,Shulman RG,andSiegel NJ. Metabolic and functional consequences of inhibiting adenosine deaminase during renal ischemia in rats. J Clin Invest 82:1694-1699,1988  .6 ?+ C- S* i: b5 ]
0 W6 P9 W, M5 R$ t! T" i
. ~9 e1 e1 z$ h+ W
5 n1 }8 h' u* s0 X
215. Susin, SA,Daugas E,Ravagnan L,Samejima K,Zamzami N,Loeffler M,Costantini P,Ferri KF,Irinopoulou T,Prevost MC,Brothers G,Mak TW,Penninger J,Earnshaw WC,andKroemer G. Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571-580,2000 .8 D1 y9 m# \6 w; Y
  Z9 b& e. z# ]/ H4 @
. a/ J, l9 r7 F) |
2 ?* v3 {  W* s  H) Y8 E  l& v
216. Susin, SA,Lorenzo HK,Zamzami N,Marzo I,Snow BE,Brothers GM,Mangion J,Jacotot E,Costantini P,Loeffler M,Larochette N,Goodlett DR,Aebersold R,Siderovski DP,Penninger JM,andKroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441-446,1999 .
5 H; p9 n1 g) d( q. X
+ U# v- X8 K4 B5 X! ~; M+ h4 I2 @
6 S0 i' _, t: i) c
# V5 ^; \/ o, A8 U  t7 ?6 w- B/ k% Q* X217. Suzuki, M,Youle RJ,andTjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645-654,2000  .
; J+ S+ {$ c) M- T# z  g! B. }$ }" q

% o, U' Y- M' J) U
% e& d: B! ]- U" O# K0 S( X218. Takada, M,Nadeau KC,Shaw GD,Marquette KA,andTilney NL. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. J Clin Invest 99:2682-2690,1997  .+ {0 A! w% X& h$ q

8 x& \8 }4 s: o, q$ j
1 u6 a; [# \! j* `* H5 l
& A5 n3 E* }7 H1 H( \219. Thadhani, R,Pascual M,andBonventre JV. Acute renal failure. N Engl J Med 334:1448-1460,1996 .
5 k4 o) I. H6 V3 Q# a9 v5 Q
* ^) F5 X* U: R+ j+ @0 P5 f; L8 ^9 ~5 v4 j( Z
' U" e" }8 d+ J' F4 Y
220. Thornberry, NA. Caspases: a decade of death research. Cell Death Differ 6:1023-1027,1999  .
0 a6 a" b  s3 R: [7 J0 J* g
, S  O7 M3 ^" o# A- G
# d. ]2 ?% B4 a
2 B8 _' H  @4 d8 e  R! @9 l  ^( p221. Thornberry, NA,andLazebnik Y. Caspases: enemies within. Science 281:1312-1316,1998 .8 W: r  l2 u! r' n5 u

: i2 _' S4 j% i0 h
7 B3 X* d. H, e: i/ ]" ^
" V- z7 Y0 N" p: f( |222. Tonshoff, B,Kaskel FJ,andMoore LC. Effects of insulin-like growth factor I on the renal juxtamedullary microvasculature. Am J Physiol Renal Physiol 274:F120-F128,1998 .
6 A& R% I# u( }! Q1 ^; q$ A4 N  U: ]; b  g; J" v2 ]0 y
5 U; V3 w6 w  v( W+ m
8 P( H* t5 u3 }7 Y; e
223. Trachtman, H,Valderrama E,Dietrich JM,andBond JS. The role of meprin A in the pathogenesis of acute renal failure. Biochem Biophys Res Commun 208:498-505,1995  .1 l* y5 b2 e/ Z  Q2 R9 F, U& d
6 g% m  j! D- l/ I" F: b) b
9 O. N7 T( |3 s/ A5 x* A- S$ ]  N

9 c0 V3 T" U, J1 M224. Trump, BF,Goldblatt PJ,andStowell RE. Studies of mouse liver necrosis in vitro. Ultrastructural and cytochemical alterations in hepatic parenchymal cell nuclei. Lab Invest 14:1969-1999,1965  ., o; {9 I% v9 q+ F! Y7 _
% K( H( v' j4 W5 P- A& |
1 H* `# h* s* T! c, t

. _2 {/ S8 W* o" W! t, s+ c225. Trump, BF,Goldblatt PJ,andStowell RE. Studies of necrosis in vitro of mouse hepatic parenchymal cells. Ultrastructural alterations in endoplasmic reticulum, Golgi apparatus, plasma membrane, and lipid droplets. Lab Invest 14:2000-2028,1965  .* d* \5 K4 _8 T9 }- x/ G- s3 E& o
) m( ]6 d+ Z6 {9 J% o* V
3 }3 }% @: E" v
9 S  y; D: n" {9 H% l1 v
226. Tschopp, J,Irmler M,andThome M. Inhibition of fas death signals by FLIPs. Curr Opin Immunol 10:552-558,1998  .1 g! E4 F5 m9 K* M1 R1 ]

2 s, p0 z, M# h& ]- [: Z" I$ i0 a( Q: G% r# Y2 ]4 W7 Z3 {) r
4 T& [& a% g  t2 E4 I2 A# I( {
227. Tsujimoto, Y,andShimizu S. Bcl-2 family: life-or-death switch. FEBS Lett 466:6-10,2000  .; @6 V8 q( A$ c6 k3 s
2 W& C' `# H( b" b6 C
  N& f. Y7 j& ~% k) b$ p5 F0 I
; I, m. n+ y* q. ~* {9 e& n/ K
228. Tsujimoto, Y,andShimizu S. VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7:1174-1181,2000  ., v# Q7 a% I  ~% F8 ~
" Z; _1 c' u7 Y5 D2 }  M

& R/ x8 m1 j5 V
8 f9 b; A2 c# d1 q: K. G; z229. Ueda, N,andShah S. Role of endonucleases in renal tubular epithelial cell injury. Exp Nephrol 8:8-13,2000  .1 Y9 I. X' z: M6 ^7 X2 C

5 L4 a2 l" A" c$ t8 k
  ?7 Y- n2 V8 y3 C  b
/ U; F0 A3 h' k7 c230. Vande Velde, C,Cizeau J,Dubik D,Alimonti J,Brown T,Israels S,Hakem R,andGreenberg AH. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454-5468,2000 .
6 q4 K' Q6 v6 [9 X( f) o2 n! H9 }
+ \) B6 v% S& u3 }; e$ z5 N4 d0 h' t: P6 _# V
- R1 c/ _% [5 \! @) a2 Q. F
231. Van Why, SK,andSiegel NJ. Heat shock proteins in renal injury and recovery. Curr Opin Nephrol Hypertens 7:407-412,1998  .) d4 r) H; G+ E4 O% \+ S
& r0 \0 S0 A- w9 ]9 }3 i  n

0 ]- v# d3 I9 f( F; l' D  f0 h# K" @# `
232. Varfolomeev, EE,Schuchmann M,Luria V,Chiannilkulchai N,Beckmann JS,Mett IL,Rebrikov D,Brodianski VM,Kemper OC,Kollet O,Lapidot T,Soffer D,Sobe T,Avraham KB,Goncharov T,Holtmann H,Lonai P,andWallach D. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267-276,1998  .* b% V) C; J& f, V8 E" @! h

" [  J, o+ i! a2 Q* {0 H' p% |1 n5 a6 I- M: {" p

$ ~' X$ e& n) q- ^+ G233. Vercammen, D,Brouckaert G,Denecker G,Van de Craen M,Declercq W,Fiers W,andVandenabeele P. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919-930,1998 .
$ Q) ?% t3 f2 k$ v; u* |* w3 R3 q7 r
) E9 j9 _+ i9 k; @; t+ y' g; c

8 o  w& S) M8 u! t% B* J8 N# B234. Vetterlein, F,Bludau J,Petho-Schramm A,andSchmidt G. Reconstruction of blood flow distribution in the rat kidney during postischemic renal failure. Nephron 66:208-214,1994  .+ k! H8 ^( U5 ]$ F# a1 q
% [* W- `. \% F0 E$ S

$ x2 G+ N7 X' l0 K2 u) O3 [8 ^
& Y! x+ c6 P6 U: }, f4 }2 u235. Vetterlein, F,Petho A,andSchmidt G. Distribution of capillary blood flow in rat kidney during postischemic renal failure. Am J Physiol Heart Circ Physiol 251:H510-H519,1986 .
& v( Z7 N" v1 R; s1 J2 d1 y0 Y9 y2 Z4 M, |* S; }; [: b  \+ A
3 G! g; v! z- ~3 z6 p

' K( y& j: _& I6 L6 ?: l236. Vijayan, A,Martin DR,Sadow JL,Kissane J,andMiller SB. Hepatocyte growth factor inhibits apoptosis after ischemic renal injury in rats. Am J Kidney Dis 38:274-278,2001  .
" T& r3 @% Z6 H7 X3 a% q+ T
  ]$ P/ b+ g  e2 M+ @+ W
# A# s1 ^( D% }  J! f% U6 V5 P1 \6 X! k3 p# X+ W/ b
237. Walker, PD,Kaushal GP,andShah SV. Meprin A, the major matrix degrading enzyme in renal tubules, produces a novel nidogen fragment in vitro and in vivo. Kidney Int 53:1673-1680,1998  .! I4 X& p1 {9 Y' Y3 N

4 c* a& W* C7 o  T8 [
" S5 M" V7 {9 A
+ O4 g; f& W7 r# }0 e3 A8 }/ h238. Wallach, D,Varfolomeev EE,Malinin NL,Goltsev YV,Kovalenko AV,andBoldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331-367,1999  .
* \% ~9 {" B; n+ v0 A% f" M2 ]% l& a) @0 P7 C( ?+ Z) m

3 _7 J  m' M* \, B/ V% W. h( u! T
4 k" t9 D) X4 r239. Wang, KK. Calpain and caspase: can you tell the difference? Trends Neurosci 23:20-26,2000  .
& B4 h6 a5 o: W  V% Z4 y- C
6 }% ?6 |$ [/ K1 r5 {# a2 s1 ]& m- \0 G& d4 \$ W

, k# Y9 O5 o9 f9 C2 u240. Wei, MC,Lindsten T,Mootha VK,Weiler S,Gross A,Ashiya M,Thompson CB,andKorsmeyer SJ. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060-2071,2000 .8 y% _" L" K6 O. g% I2 o( y) y6 g

8 L) v5 G& F% }' f6 j' l3 s& A6 N3 b7 E: h9 N3 {( G
5 `1 V1 w, k. {- r* L  G
241. Weinberg, JM. The cell biology of ischemic renal injury. Kidney Int 39:476-500,1991  .
) T3 V' |! l% O# p/ b' V7 g6 R8 Z

. W. ]. ~) x: r
% r! R) G4 F" x2 J' J; A242. Weinberg, JM,Venkatachalam MA,Roeser NF,andNissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 97:2826-2831,2000 .
# P% i- N. _9 _- V
  h0 I( |* B4 Z0 k3 L' t- A, u% Y; u8 C" d5 S/ F% V

1 h- U% j$ ^' C9 U0 S) k243. Wu, X,Molinaro C,Johnson N,andCasiano CA. Secondary necrosis is a source of proteolytically modified forms of specific intracellular autoantigens: implications for systemic autoimmunity. Arthritis Rheum 44:2642-2652,2001  .8 p: F% W, C( h! S* f$ H# ^) y; M
& B$ X( a' c, h  u0 O7 Y8 k# v, a

) Y1 h. S. X# d/ \( Y% ?/ [8 t+ u. F  }
244. Wyllie, AH. Death from inside out: an overview. Philos Trans R Soc Lond B Biol Sci 345:237-241,1994  .+ B0 [- E7 H2 U7 r+ a
) H3 D% s; R& T  E) t4 {9 H/ E" F/ B! I
2 ]2 \. j; l7 E( `
& K! H! {; n2 D4 `. v' w' `; U, N
245. Wyllie, AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555-556,1980 .* l& |/ S* \3 X3 I1 I6 r6 |7 v: c
, F3 e' `# Y, }- E' ?9 g

9 R: k5 t. r1 _& I; u$ M- P' n" p" t8 i8 W' h# A4 @
246. Wyllie, AH,Kerr JF,andCurrie AR. Cell death: the significance of apoptosis. Int Rev Cytol 68:251-306,1980 .
4 T5 N8 [/ ^. g0 C$ D# l+ h
+ \- |! ]/ ]" t# h0 z/ I4 X4 y+ f. D0 U+ L5 `) h. P
8 f* B" r8 W# h$ e6 P2 D1 A
247. Xu, K,Tavernarakis N,andDriscoll M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca 2  release from the endoplasmic reticulum. Neuron 31:957-971,2001  .
7 k+ A, h$ J% \
! h! k8 {* E# `2 \0 M$ P3 H& s! @/ U) g  U, J4 v; J
* R' |/ n" g3 m4 q. q8 p
248. Ye, H,Cande C,Stephanou NC,Jiang S,Gurbuxani S,Larochette N,Daugas E,Garrido C,Kroemer G,andWu H. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 9:680-684,2002  .
( j8 C1 \* z/ `4 I3 o
$ E, m: ^4 C, E% E- p- w+ z4 k/ D  E. D9 |9 Q

$ C. B9 [7 @* L6 _5 x- m249. Yu, SW,Wang H,Poitras MF,Coombs C,Bowers WJ,Federoff HJ,Poirier GG,Dawson TM,andDawson VL. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259-263,2002 ., D; N! t" v' ~7 H2 F

0 R/ x, P1 z* j8 u" K& \. c9 n8 |6 F8 {' ~& E

& l) C( \& ~1 f! _. ]) h8 X4 @250. Zager, RA,Burkhart KM,Conrad DS,Gmur DJ,andIwata M. Phospholipase A 2 -induced cytoprotection of proximal tubules: potential determinants and specificity for ATP depletion-mediated injury. J Am Soc Nephrol 7:64-72,1996 .
5 {$ B- v: U4 g+ a
; `$ p; r. R$ @6 {6 Y) F4 y" j" P
- g" ]8 q3 |  B" A. T1 a2 j/ O) E' Z) k2 G& P9 X$ B
251. Zager, RA,Conrad DS,andBurkhart K. Phospholipase A 2 : a potentially important determinant of adenosine triphosphate levels during hypoxic-reoxygenation tubular injury. J Am Soc Nephrol 7:2327-2339,1996 .
- \9 z% |' M8 Q' _% Y- H/ `1 J3 s5 T/ l
+ D8 v! U  q+ C# K* C  V+ Z9 [

  H. H, i5 l8 r, L/ C' o  ]9 L2 N- g252. Zamzami, N,andKroemer G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2:67-71,2001  .) `4 l3 B: k- @& g' r6 F
, S! K' G. X0 D; l- M  k) \

: X  [2 m( }  t  u3 i/ t$ _% Z  e7 {  }& a
253. Zhang, J,Dawson VL,Dawson TM,andSnyder SH. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687-689,1994 .
3 t: t- Q, E" h5 V8 A
  K, I& [- \& }+ v! a; d" i+ Z6 d  L- Z. F

* k' S2 _6 W+ p" m: P% ~' {5 b254. Zhang, J,Liu X,Scherer DC,van Kaer L,Wang X,andXu M. Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc Natl Acad Sci USA 95:12480-12485,1998 .
! ?. p" A0 V% I- i1 {
& ~; @- a6 J* d2 F  D: p" Z& v( {1 U& \2 |# q& r
- q* e( X" E  U3 l( V: S
255. Zhang, J,andXu M. Apoptotic DNA fragmentation and tissue homeostasis. Trends Cell Biol 12:84-89,2002  .1 l& j9 s  n3 z, B/ c+ c' _5 d
+ V; s% E; C3 I1 a5 r5 q# y

8 E) a( H$ @) n2 h+ [4 l" E; v) Z4 Q+ [: `% @) w7 W
256. Zhang, JH,andXu M. DNA fragmentation in apoptosis. Cell Res 10:205-211,2000  .9 H; t6 A& l3 V' L" Q

; ~5 l8 k/ ]& U# \
% K% }1 v! X, [: q! c0 [7 J5 f) g" F5 c7 f) \* v
257. Zingarelli, B,Cuzzocrea S,Zsengeller Z,Salzman AL,andSzabo C. Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc Res 36:205-215,1997 .

Rank: 2

积分
116 
威望
116  
包包
1832  
沙发
发表于 2015-6-11 16:18 |只看该作者
这个贴不错!!!!!看了之后就要回复贴子,呵呵  

Rank: 2

积分
84 
威望
84  
包包
1877  
藤椅
发表于 2015-6-24 17:51 |只看该作者
呵呵 都没人想我~~  

Rank: 2

积分
77 
威望
77  
包包
1730  
板凳
发表于 2015-6-29 21:16 |只看该作者
干细胞之家微信公众号
挺好啊  

Rank: 2

积分
69 
威望
69  
包包
1788  
报纸
发表于 2015-7-29 13:07 |只看该作者
顶你一下,好贴要顶!  

Rank: 2

积分
68 
威望
68  
包包
1752  
地板
发表于 2015-8-12 13:22 |只看该作者
给我一个女人,我可以创造一个民族;给我一瓶酒,我可以带领他们征服全世界 。。。。。。。。。  

Rank: 2

积分
101 
威望
101  
包包
1951  
7
发表于 2015-8-22 20:36 |只看该作者
加油啊!!!!顶哦!!!!!  

Rank: 2

积分
66 
威望
66  
包包
1790  
8
发表于 2015-9-5 10:24 |只看该作者
先看看怎么样!  

Rank: 2

积分
73 
威望
73  
包包
1833  
9
发表于 2015-9-5 18:30 |只看该作者
这个贴好像之前没见过  

Rank: 2

积分
104 
威望
104  
包包
1772  
10
发表于 2015-10-8 08:54 |只看该作者
昨天没来看了 ~~  
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-4 14:42

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.