干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
干细胞之家 - 中国干细胞行业门户第一站 干细胞之家论坛 细胞与微环境 沙龙区 《科学》:模式生物将为疾病治疗提供最短和最有效的途径
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 16122|回复: 2
go

《科学》:模式生物将为疾病治疗提供最短和最有效的途径 [复制链接]

Rank: 7Rank: 7Rank: 7

积分
13286 
威望
13286  
包包
34831  

论坛元老 精华勋章 金话筒 专家 优秀会员 优秀版主

楼主
发表于 2011-1-6 13:17 |只看该作者 |倒序浏览 |打印
本帖最后由 sunsong7 于 2011-1-6 13:26 编辑 * O2 w6 x# s( J6 I; B1 B
* o: Y/ ?- p+ r' m, H( m
《科学》社论:模式生物研究关乎人类健康
# d7 B. x# |9 `$ ~$ @% u, @6 ~未来对果蝇和线虫的研究将为疾病治疗提供最短和最有效的途径
& J0 X2 e6 n' B0 I: d. r2 n) R  [《科学时报》 (2011-01-06 A4 国际)
4 G, G9 g! r8 A5 U0 m5 S3 ?& K$ K6 p/ ~, p3 v& g( [, x
科学家们分析基因组信息如何通过转译、表达和相互作用而形成果蝇和线虫。(图片提供:《科学》)
* o7 _: y. u6 y# i( {9 x     黑腹果蝇和秀丽隐杆线虫是理解包括人在内的所有动物生物学的最好模式生物。十多年前,当研究人员公布这两种生物的基因组序列时,人们为之惊叹。如今,几百位科学家合作、描述和解读了这两种生物体的基因组,这相当于在揭示基因组中的暗物质。在2010年最后一期的《科学》杂志上,编辑们突出介绍了这两项里程碑式的新成就,《科学》杂志总编辑布鲁斯·阿尔伯茨在社论中说:“两项研究的目的是深入理解果蝇和线虫的身体是如何形成和维持的,这对提高人类的健康水平来说至关重要。”8 c/ p/ a5 l( M6 y8 u( y: \* @

5 }' d. s5 ]$ S( f5 G动物的胚胎能成功地将DNA双链上的遗传信息转化为多维的生命体,这些生命体能迎接自然选择的挑战并繁殖后代。那么,动物的胚胎是如何将基因组中的信息精确地转化为组织和身体呢?目前,科学家们还不能从基因组推断出生命体,但新研究让我们离这个目标更近了。阿尔伯茨认为,两项新研究的意义已经远远超过了对形成果蝇和线虫基因组的DNA分子的完整描述,它们揭示出所有这些生物体所产生的成千上万种RNA分子和蛋白质,以及这些遗传信息是如何被包装的。建立在这些数据基础的广博万维网数据库免费向所有人开放,将大大加快未来发现的速度。2 z7 s+ g9 o/ q6 M: {4 [- z

! S; g) y+ s1 A  h0 K阿尔伯茨指出, 美国政府用于资助生物医学研究的绝大部分经费分配给了国立卫生研究院(NIH)。NIH在2010年度的预算达310亿美元,反映了公众的一种普遍共识:生物医学研究能大大提高人类的健康水平。然而,尽管这些研究让我们对细胞和组织有了更深入的了解,但许多疾病仍然不可治愈。今天,对公众而言,科学家们对细胞的化学和分子生物学的丰富知识与对人类疾病的干涉能力之间的巨大差距,是一种不协调,但从事这些研究的科学家们并不感到吃惊:对细胞如何工作了解得越多,就会更惊异地发现创造一个人的过程是多么的精致和复杂。; ~: `  r- P. x) U' N  f
& r, _8 t: k! k2 s1 P4 s
阿尔伯茨举了一个例子。细菌只要有食物就会持续生长和分裂,不同于此,动物的细胞则需要一个位置检测系统,在所需要的许多细胞聚集在组织中时指导其增生。一个动物细胞在行为时好像其内部有一部微型计算机,评估它从附近收到的各种信息,然后决定是否保持自身的稳定、生长和分裂,或者自杀以有利于整个细胞的会聚。这两项新研究中所使用的强力工具,为我们提供了参与其中的所有分子的名单。但是,关键的挑战是如何精确解读细胞内信号分子的精致网络是怎样让它作出关键性的决定,这相当于细胞的“思考”过程。一旦科学家们真正理解了这个过程,他们就能创建精确工具来修正细胞行为,比如,当细胞增生失控产生癌症,或不适当的死亡而造成退化性神经疾病,如阿尔茨海默氏症等。0 f# K3 E* ^( F- ]! L5 B5 H% h2 j' \

+ D" n5 k6 e9 N2 ]) {6 K) v  N阿尔伯茨指出,所谓的“转化医学”,就是利用我们在分子水平对细胞和生物体工作方式的知识来提高人类健康水平的努力。他认为,新研究成果的最终成功依赖于能将更多的知识“转化”为医学。漫长的进化过程让多种多样的动物生活在地球上,创造人、果蝇和线虫的分子和机制几乎是相同的。但与人类不一样,果蝇和线虫可以通过实验进行操作,借助于强力的遗传工具,科学家们通过它们短暂的生命周期以了解其形成的复杂机制。这时,人类就会发现自己处在一个令人叹为观止的位置:虽然看似不可能,但未来对果蝇和线虫的研究将为人类疾病的治疗提供最短和最有效的途径。(王丹红)
5 x( g) {7 m1 J2 O8 d- F8 |
1 d4 Y! ^: _/ k* T% a% |Science
% j0 g% [9 K. _% shttp://www.sciencemag.org/content/330/6012/1724.full
( _/ O/ }; `% x1 ]6 m24 December 2010: Vol. 330 no. 6012 p. 1724  DOI: 10.1126/science.1201826 Published Online 22 December 2010
- I: w& p/ |% h7 f8 l* mCREDIT: TOM KOCHELIn this issue of Science, we highlight the impressive efforts to describe and analyze the genomes of the two organisms—the fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans—that serve as the best models for understanding the biology of all animals, including humans. Hundreds of scientists have collaborated in these two major studies, which have moved us far beyond the complete descriptions of the DNA molecules that make up the fly and worm genomes published a little more than a decade ago, an accomplishment that seemed amazing then. As summarized in the Perspective on p. 1758, the new findings reveal essentially all of the tens of thousands of RNA and protein molecules that each of these organisms produces, as well as how their genetic information is packaged. Extensive Web-based databases built on these data are freely available to everyone, greatly accelerating future discoveries. Strange as it may seem, this research, aimed at reaching a deep molecular understanding of how the bodies of a fly and a worm are formed and maintained, will be critical for improving human health.
" B9 k. X* i% ]* q4 }+ w% {3 Y2 x2 U
, n0 ?1 L  c  G& |) _& U' W0 T- \  D
CREDIT: WIKIMEDIA COMMONSMost of the government funding for biomedical research in the United States is distributed through the National Institutes of Health. Its budget of $31 billion in 2010 reflects a widespread public appreciation that biomedical research will lead to great improvements in human health. Despite the many advances in our understanding of cells and tissues produced by this research, many diseases remain incurable. The disparity between the enormous amount now known about the chemistry and molecular biology of cells and our ability to intervene in human disease may seem incongruous to the public, but it is not at all surprising to the scientists involved: As we have learned more about how cells work, we have been surprised to discover how enormously sophisticated and complex are the processes that produce a human being.
" G* i$ l! v# L+ O+ g, o* u0 ?) g) E
Consider just one example. Unlike a bacterium that keeps growing and dividing as long as food is available, each cell in an animal requires a position-detection system that causes it to proliferate only when more cells of its type are needed at its particular position in a tissue. An animal cell behaves as though it contains a tiny computer, assessing the many signals that it receives from its neighborhood and then deciding whether to maintain itself unchanged (its usual fate), grow and divide, or kill itself for the good of the entire cell collective. Powerful techniques such as those used in these two landmark studies can provide us with lists of all the molecules involved. But the crucial next challenge, thus far out of reach, is to decipher exactly how the elaborate networks of signaling molecules that exist inside a cell enable it to make its crucial decisions—a process analogous to cell “thinking.” Once scientists truly understand such processes, they will be able to create precise tools to correct harmful cell behaviors, as when cells multiply out of control in cancer or when they die inappropriately in degenerative conditions such as Alzheimer's disease.
: t4 g& b6 d* r0 l6 T
2 j$ @; [4 H/ l+ Z4 [' B+ M$ uThe effort to use what we are learning about how cells and organisms work at the molecular level to improve human health is often called “translational medicine.” The ultimate success of this important endeavor will depend on gaining much more knowledge to “translate.” Because of the long evolutionary process that has given rise to the diverse array of animals that populate Earth, the molecules and mechanisms that produce humans, flies, and nematodes are nearly the same. But unlike humans, flies and worms can be experimentally manipulated, and they have short generation times that allow the complex mechanisms that form them to be deciphered with powerful genetic tools. And thus we find ourselves in a surprising position: As incredible as it seems, future research on flies and worms will quite often provide the shortest and most efficient path to curing human disease. 1 Z9 A2 u: t& r$ b

6 l3 O- g( B  h  V
7 u$ |6 ~8 j' O: T- X& z/ c
9 q! X) R/ k' _( U. n: p
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 2 + 5 极好资料

总评分: 威望 + 2  包包 + 5   查看全部评分

Rank: 4

积分
2172 
威望
2172  
包包
6551  

金话筒 优秀会员 新闻小组成员 帅哥研究员

沙发
发表于 2011-1-6 15:05 |只看该作者
题外话- A9 \2 Y0 t7 t3 d; T( E1 f
疑问:快速拉动时那个暗红字为啥成红色的了?

Rank: 3Rank: 3

积分
527 
威望
527  
包包
1573  

优秀会员

藤椅
发表于 2011-1-6 21:41 |只看该作者
估计是暗红与白的底色混合产生的效果
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-3 20:58

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.