干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 354752|回复: 203
go

[干细胞与细胞生物学类] Current Protocols in Cytometry 2017s80 [复制链接]

Rank: 4

积分
1164 
威望
1164  
包包
245  

优秀会员 精华勋章 小小研究员 美女研究员 博览群书 帅哥研究员 积极份子

楼主
发表于 2017-6-6 03:16 |只看该作者 |倒序浏览 |打印
更新至2017年4月
附件: 你需要登录才可以下载或查看附件。没有帐号?注册

Rank: 4

积分
1164 
威望
1164  
包包
245  

优秀会员 精华勋章 小小研究员 美女研究员 博览群书 帅哥研究员 积极份子

沙发
发表于 2017-6-11 04:38 |只看该作者
TABLE OF CONTENTS7 e* W9 T: v+ h- f6 c% H
• Chapter 1 Flow Cytometry Instrumentation
2 z  d9 }) {2 N) Q* T9 R• Introduction
4 }, m4 G% {# s• Unit 1.1 Overview of Flow Cytometry Instrumentation5 d& U) y; y4 i! E, h8 @7 V% f6 j" K
• Unit 1.2 Fluidics
& S! ?& y6 L) n0 u& m) D& u• Unit 1.3 Standardization, Calibration, and Control in Flow Cytometry
2 F/ E! s1 ^& ~* `8 Y+ b# _2 B• Unit 1.4 Establishing and Maintaining System Linearity
' r/ F3 F  l2 H  K4 x1 ~/ p6 K, v• Unit 1.5 Optical Filter Sets for Multiparameter Flow Cytometry
* v, t0 F6 e2 i% S$ Y• Unit 1.6 Laser Beam Shaping and Spot Size
  V9 {9 @4 d8 \( n2 T• Unit 1.7 High‐Speed Cell Sorting
3 l/ o8 x- b- ^7 q+ S4 c• Unit 1.8 Principles of Gating
  {1 k: l3 D" E• Unit 1.9 Lasers for Flow Cytometry7 {- c: n1 @9 z# w, N% F/ W& ~" j/ F
• Unit 1.10 Techniques for Flow Cytometer Alignment
* S3 r* ^, e% P+ `• Unit 1.11 Flow Cytometers for Characterization of Microorganisms
1 u5 l- w4 U, F' |6 G, e( [• Unit 1.12 Principles of Resonance Energy Transfer  G, v7 v6 y6 V$ ^/ k1 w; x3 H
• Unit 1.13 Light Scatter: Detection and Usage4 e9 L5 X$ I5 e5 u1 p; s4 A$ q4 J
• Unit 1.14 Compensation in Flow Cytometry/ {9 X9 \0 O' a" F  y4 ~
• Unit 1.15 Time‐Resolved Fluorescence Measurements
1 F; S* z- M# M& D( R9 |• Unit 1.16 Simultaneous Analysis of the Cyan, Green, and Yellow Fluorescent Proteins
- C  q( U* f/ n/ t• Unit 1.17 Plug Flow Cytometry
* z. ?/ l* r/ Z- @• Unit 1.18 Dynamic Thermoregulation of the Sample in Flow Cytometry
, e0 X# g* H3 }2 h• Unit 1.19 Excitation and Emission Spectra of Common Dyes. Q, W# {6 W/ R
• Unit 1.20 Characterization of Flow Cytometer Instrument Sensitivity
# R! D. l- p4 c) p/ Q- q• Unit 1.21 Separation Index: An Easy‐to‐Use Metric for Evaluation of Different Configurations on
: y* K  u. P$ q" s8 I3 u" U! z& othe Same Flow Cytometer
; o. Q1 e* C" N3 _1 x( Q! L, y• Unit 1.22 Fundamentals of Acoustic Cytometry  u* A  E0 n8 G
• Unit 1.23 Pulse Width for Particle Sizing* K8 g1 ]" Z( B3 d! J  x
• Unit 1.24 Practical Issues in High‐Speed Cell Sorting! i' d0 q) \( ]/ o
• Unit 1.25 Capture of Fluorescence Decay Times by Flow Cytometry
. R* B$ @6 \; K( d  S* e• Unit 1.26 Fountain Flow Cytometry
/ {( \+ z7 m7 _• Unit 1.27 Spectral Flow Cytometry7 r9 V$ Z6 Z& }; K+ o
• Unit 1.28 Evaluation and Purchase of an Analytical Flow Cytometer: Some of the Numerous
% D# V7 U+ W1 o: |) ^% d8 qFactors to Consider
0 Z) }& H' e; {$ s9 S) ^+ V$ _1 v• Unit 1.29 Quantitative Flow Cytometry Measurements in Antibodies Bound per Cell Based on a
9 [% k, r# F! W' \  r% M: N, A, I! x' @CD4 Reference
( ~% E) }6 q1 u& q: j4 W• Unit 1.30 A Quantitative Method for Comparing the Brightness of Antibody‐dye Reagents and- [) h+ _6 f: M& i, ?# K$ ~
Estimating Antibodies Bound per Cell( z8 S! G0 d5 Z
• Chapter 2 Image Cytometry Instrumentation7 w+ E/ [# A9 \
• Introduction% s1 n9 j- f5 u
• Unit 2.1 Contrast Enhancement in Light Microscopy
* s9 P# u! [8 d9 v" j( d• Unit 2.2 Microscope Objectives; _" {  e1 K7 y( S- u* Q/ L; Y5 u
• Unit 2.3 Light Microscopy Digital Imaging
, |. a# U! q0 \& C• Unit 2.4 Optical Filters for Wavelength Selection in Fluorescence Instrumentation8 n  \$ ]% J  d2 m( c- |7 {; p
• Unit 2.5 Digital Fluorescence Microscopy
- K$ [+ Q( a& y; D( o9 |% U4 ?• Unit 2.6 Calibration: Sampling Density and Spatial Resolution. f  v: f- H! H+ m9 W2 b
• Unit 2.7 Microscope Alignment
8 x4 A% d( v" `- d# ]0 x• Unit 2.8 Confocal Microscopy: Principles and Practices& d( |0 @6 }9 O% {' A4 ?4 e
• Unit 2.9 Multi‐Photon Imaging
0 y8 R( \5 |6 G5 M4 g8 F5 j) i7 Z( s• Unit 2.10 Scanning Laser Cytometry8 ~7 U5 |% j4 P. t
• Unit 2.11 Shading Correction: Compensation for Illumination and Sensor Inhomogeneities) ~5 [1 t- @6 L$ |" k6 K
• Unit 2.12 Photobleaching Measurements of Diffusion in Cell Membranes and Aqueous Cell
+ ~. N" j% R! `1 rCompartments% o  M( A# ~. c1 M$ n6 l% |$ e% i
• Unit 2.13 Optimizing Laser Source Operation for Confocal and Multiphoton Laser Scanning
, W$ @3 @8 I( V! VMicroscopy- J- V7 E' y& c& t* l! j0 h5 E* `
• Unit 2.14 Methods and Applications of Laser‐Enabled Analysis and Processing (LEAP)
! U! ], S, S* y$ ]0 \- ~6 S• Unit 2.15 Measurement of Molecular Mobility with Fluorescence Correlation Spectroscopy
+ K  \! C: v/ a3 I8 ?1 s• Unit 2.16 Evaluation and Purchase of Confocal Microscopes: Numerous Factors to Consider
7 h$ C" W, ^' Y• Unit 2.17 Super‐Resolution Microscopy: A Comparative Treatment- {0 g1 ~0 Q6 L/ i3 i2 ~
• Unit 2.18 Quantitative Fluorescent Speckle Microscopy (QFSM) to Measure Actin Dynamics
- Q1 G- C4 g8 r2 O3 _/ }• Unit 2.19 Analysis of Protein and Lipid Dynamics Using Confocal Fluorescence Recovery After
( j( T1 I2 N. V& w+ ^/ v, E# q& ^Photobleaching (FRAP)) m5 e, x# q/ f3 S- c# m4 j
• Unit 2.20 Comparative and Practical Aspects of Localization‐Based Super‐Resolution Imaging, z" u' D! e  k0 _/ U0 J# B
• Unit 2.21 Building a Live Cell Microscope: What You Need and How to Do It
! c, o) U$ L" q' x9 |) D• Unit 2.22 How to Build a Time‐Gated Luminescence Microscope
! i8 R8 r6 J' ?# e/ t, N; U• Unit 2.23 FRET Imaging by Laser Scanning Cytometry on Large Populations of Adherent Cells& {8 u3 p: B5 p( p
• Chapter 3 Safety Procedures and Quality Control% B+ a- v4 j7 `3 Y8 n9 O
• Introduction
, z: d% X6 O( r• Unit 3.1 Principles of Quality Control! h) u, o, Y3 H. O  v5 w
• Unit 3.2 Components of Quality Control
  c; x( n; u3 x+ ^/ y2 W4 J• Unit 3.3 Testing the Efficiency of Aerosol Containment During Cell Sorting" A; I% u1 W* c* N3 Z
• Unit 3.4 Safe Use of Hazardous Chemicals
$ D- H8 O9 y3 T  q" f4 u+ ]• Unit 3.5 Method for Visualizing Aerosol Contamination in Flow Sorters0 e6 M5 ^: G6 B7 K& |$ m8 k
• Unit 3.6 Standard Safety Practices for Sorting of Unfixed Cells
0 m! H+ H- S9 b3 U• Chapter 4 Molecular and Cellular Probes0 ?; ^+ o4 I) ^6 e# m4 Y1 Z
• Introduction
2 ?1 x6 c( Z4 v* l& m+ y& x! o) n• Unit 4.1 Titering Antibodies
' e: X+ D& X- W9 [3 m( b• Unit 4.2 Conjugation of Fluorochromes to Monoclonal Antibodies* s& V8 F$ k( a& J8 W
• Unit 4.3 Nucleic Acid Probes
4 \, c( J7 t, f* \2 x• Unit 4.4 Cellular Function Probes/ p+ H& c8 G- n, ^
• Unit 4.5 Spectroscopic Analysis Using DNA and RNA Fluorescent Probes9 C' Z$ i: b! \: a
• Unit 4.6 Flow Cytometric Sorting of Bacterial Surface‐Displayed Libraries$ z, o; Z: g3 t# ?) d
• Unit 4.7 Construction and Screening of Antigen Targeted Immune Yeast Surface Display
* C2 }9 k# z. w' tAntibody Libraries
$ [6 N7 d# X5 j  L& G% M• Chapter 5 Specimen Handling, Storage, and Preparation
+ l% x7 [; q- M* F' `/ P' y• Introduction
. s# H" M0 Q5 C• Unit 5.1 Collection, Storage, and Preparation of Human Blood Cells4 c  |! b7 G! G" w- C$ l& ]  v! L
• Unit 5.2 Handling, Storage, and Preparation of Human Tissues
! X7 j$ s, ]2 Z$ [+ Z+ Q0 U9 }• Unit 5.3 Flow Analysis and Sorting of Plant Chromosomes1 t) r/ E  X9 t# X
• Chapter 6 Phenotypic Analysis6 e/ p; {: Q+ I8 g
• Introduction$ J! D7 i" S0 J: C8 j' O# V7 K& \# ]
• Unit 6.1 Quality Control in Phenotypic Analysis by Flow Cytometry0 C' N# t- h/ f- t4 @
• Unit 6.2 Immunophenotyping
* u+ R% K8 j: p* r+ E• Unit 6.3 High‐Sensitivity Immunofluorescence/Flow Cytometry: Detection of Cytokine
& Z( m4 L1 A. sReceptors and Other Low‐Abundance Membrane Molecules% A* w! B, E# F! o0 S
• Unit 6.4 Enumeration of CD34+ Hematopoietic Stem and Progenitor Cells
$ b2 Q# {% ]+ \' `, b• Unit 6.5 Immunophenotypic Analysis of Peripheral Blood Lymphocytes
7 E) L) k4 M% a9 C& f• Unit 6.6 Immunophenotypic Analysis of Human Mast Cells by Flow Cytometry# C( A* D0 ]' N1 N& |
• Unit 6.7 Measurement of CD40 Ligand (CD154) Expression on Resting and In Vitro–Activated T& d9 g9 _1 k# _3 M, A; ~
Cells
6 x* T: D; A  E6 H1 D% j' y• Unit 6.8 Enumeration of Absolute Cell Counts Using Immunophenotypic Techniques
+ X  q/ W/ ~6 s' u$ @! H& O: N• Unit 6.9 Immunophenotypic Identification, Enumeration, and Characterization of Human3 B$ @2 |  I) x1 E- R# S2 F
Peripheral Blood Dendritic Cells and Dendritic‐Cell Precursors
% h5 Z5 k: Y4 [% C4 c, ~• Unit 6.10 Immunophenotypic Analysis of Platelets
4 E' D6 C" p: v• Unit 6.11 Immunophenotypic Analysis of PNH Cells
8 \9 V9 J, f! g- t, V. r6 [7 e• Unit 6.12 Quantitative Flow Cytometric Analysis of Membrane Antigen Expression0 @2 [( r& \% Z! q
• Unit 6.13 Immunophenotyping Using a Laser Scanning Cytometer
( i. Y% S/ k% Q& N# R9 o5 W# Z• Unit 6.14 Enzymatic Amplification Staining for Cell Surface Antigens
  L; r& G& b9 U# m9 H" g9 l• Unit 6.15 Whole Blood Analysis of Leukocyte‐Platelet Aggregates
9 k6 `7 m5 C% R# ]  s) a% n• Unit 6.16 Flow Cytometric Assessment of HLA Alloantibodies3 x% O9 V  H7 n; C" Y
• Unit 6.17 Enumeration of Fetal Red Blood Cells, F Cells, and F Reticulocytes in Human Blood
% H( L, I- H  ]$ R( r3 g# T• Unit 6.18 Identification of Human Antigen‐Specific T Cells Using MHC Class I and Class II, v: M1 D6 J" P/ k# E
Tetramers
9 r% {1 W  j) k0 Q' c4 Y• Unit 6.19 ZAP‐70 Staining in Chronic Lymphocytic Leukemia
  H! w) Z3 \& q: O( }• Unit 6.20 Multiparameter Analysis of Intracellular Phosphoepitopes in Immunophenotyped Cell; y7 B1 P6 d/ h# s- `
Populations by Flow Cytometry
6 ^7 L$ o& ^) I* [) e1 R3 m• Unit 6.21 Ten‐Color Immunophenotyping of Hematopoietic Cells
: u3 P) A! h5 s! e5 O• Unit 6.22 Flow Cytometric Screening for the HLA‐B27 Antigen on Peripheral Blood Lymphocytes% ^7 H* n' m3 w; b) ^8 j  d3 C
• Unit 6.23 Immunophenotyping of Plasma Cells4 Y0 F& h& u* W, G3 V  ?, {
• Unit 6.24 Flow Rate Calibration for Absolute Cell Counting Rationale and Design
6 a4 A6 a  C, P6 V, a- `• Unit 6.25 Flow Cytometric Immunophenotyping of Cerebrospinal Fluid2 p; m7 U3 I- y4 l1 ?9 r
• Unit 6.26 Calibration of Flow Cytometry for Quantitative Quantum Dot Measurements( c, Q5 g# I; Y8 P% A" q( T
• Unit 6.27 Assessment of Beta Cell Viability2 H* O8 H/ U' t4 G4 l: @1 E2 U# L8 p
• Unit 6.28 Measurement of T Cell Activation After 16‐hr In Vitro Stimulation with Concanavalin A
5 T7 R- J* W# @7 L: n• Unit 6.29 Titration of Fluorochrome‐Conjugated Antibodies for Labeling Cell Surface Markers on; B2 x/ @- O" H: W% s) ^
Live Cells9 e" i& u. q2 [
• Unit 6.30 Phenotypic Analysis Using Very Small Volumes of Blood$ _! o" O, `. @7 m
• Unit 6.31 Fluorescent Cell Barcoding for Multiplex Flow Cytometry1 F+ h$ r9 T: C/ j' |  t
• Unit 6.32 Quantitative Assessment of Pancreatic Islets Using Laser Scanning Cytometry
2 r, F. I3 |" Q• Unit 6.33 Three‐Dimensional Second‐Harmonic Generation Imaging of Fibrillar Collagen in
1 P. k1 k; s8 B( XBiological Tissues. x% b: r! v, }9 U2 C) m. Z- v1 K" Z
• Unit 6.34 Flow Cytometry–Based Cytotoxicity and Antibody Binding Assay+ a) e( g9 p- K$ _- H
• Unit 6.35 Quantification of Th1 and Th17 Cells with Intracellular Staining Following
- q" Q7 d" Z2 n4 x8 d, fPMA/Ionomycin Stimulation
5 O- r  \0 z3 ]  g• Unit 6.36 Whole Blood Measurement of Histone Modifications Linked to the Epigenetic
) M0 a! a+ g- lRegulation of Gene Expression
# X1 F0 k' u- L• Unit 6.37 High‐Sensitivity Detection of PNH Red Blood Cells, Red Cell Precursors, and White
+ x+ w' i1 c# q9 _) Q5 O- |4 g& `' ~Blood Cells
* J# I5 o7 X2 d• Unit 6.38 Method for DNA Ploidy Analysis Along with Immunophenotyping for Rare Populations
& e/ `1 V  F$ j& ~5 ^9 J' }4 rin a Sample using FxCycle Violet
& \1 o) J* l: m, }% Y, ]• Chapter 7 Nucleic Acid Analysis
% Q6 D# _# E! V! F$ e• Introduction
7 `3 j' }/ D9 G4 o• Unit 7.1 Overview of Nucleic Acid Analysis$ G& c4 x  x% x1 i
• Unit 7.2 Critical Aspects in Analysis of Cellular DNA Content7 V- P* l! J" X
• Unit 7.3 Differential Staining of DNA and RNA# E5 V- E; q) B& |& m+ d3 e5 T9 r
• Unit 7.4 Analysis of DNA Content and DNA Strand Breaks for Detection of Apoptotic Cells
" V3 }. p( K" v0 o- \• Unit 7.5 DNA Content Measurement for DNA Ploidy and Cell Cycle Analysis
8 K; N' v2 E- O9 v• Unit 7.6 Analysis of Nuclear DNA Content and Ploidy in Higher Plants5 B7 D9 G- U$ O4 X
• Unit 7.7 Analysis of DNA Content and BrdU Incorporation
8 p) x6 D# A. b) I# S( r• Unit 7.8 Analysis of DNA Denaturation7 d. J! J1 A. u( v% {6 L- I
• Unit 7.9 Bivariate Analysis of DNA Content and Expression of Cyclin Proteins
# q2 i* M( r' r' U: z• Unit 7.10 Flow Cytometric Analysis of Reticulated Platelets
/ B& H5 k. m' @9 F9 v- D• Unit 7.11 Assessment of Viability, Immunofluorescence, and DNA Content1 Y9 W  Z1 N! ]& t
• Unit 7.12 Flow Cytometric Analysis of RNA Synthesis by Detection of Bromouridine4 O( y9 T6 t, H2 ?/ E5 p, o
Incorporation
* t! J& @/ w# Z9 H' \4 |• Unit 7.13 Sperm Chromatin Structure Assay for Fertility Assessment; B( T! w- J% T: g+ r
• Unit 7.14 Analysis of Cell Proliferation and Cell Survival by Continuous BrdU Labeling and: U5 [0 f5 X' v$ b( w
Multivariate Flow Cytometry) f3 v# L0 g2 g" W/ R* S, z
• Unit 7.15 Ultraviolet‐Induced Detection of Halogenated Pyrimidines (UVID)2 T8 G' j! K: I. u2 U8 @" ], m! t
• Unit 7.16 Analysis of DNA Content and Green Fluorescent Protein Expression
& x% u" o  a: c- B/ [. ^/ Z" t, Q• Unit 7.17 Analysis of Viral Infection and Viral and Cellular DNA and Proteins by Flow Cytometry
# u2 v' w: \# L  Z• Unit 7.18 Apoptosis Signaling Pathways& O) P% I; E0 |) n3 U! f( F! a0 f
• Unit 7.19 Flow Cytometry of Apoptosis
6 ^& q# N' h8 t! r5 @: H6 e• Unit 7.20 Analysis of Fine‐Needle Aspirate Biopsies from Solid Tumors by Laser Scanning! B8 W0 e3 C+ F& ]& G7 b) f" P
Cytometry (LSC)! n+ W4 ?  V/ W+ G- a8 e( G
• Unit 7.21 Measurement of Cytogenetic Damage in Rodent Blood with a Single‐Laser Flow7 ]  n5 h' U* v; t
Cytometer9 |. a, W* k7 L
• Unit 7.22 Analysis of Tissue Imprints by Scanning Laser Cytometry
5 E" z4 G0 F2 }& J$ I• Unit 7.23 Cell Cycle Analysis of Budding Yeast Using SYTOX Green
4 h/ T8 h6 Y% o/ u0 m• Unit 7.24 Detection of Mitotic Cells
$ s6 Q6 T7 `, ~" n1 C- M• Unit 7.25 DRAQ5 Labeling of Nuclear DNA in Live and Fixed Cells
9 t& r, D" B* ?) `9 z8 b/ m• Unit 7.26 Assessment of Telomere Length, Phenotype, and DNA Content$ Q3 i) M: d, o' p# \% K
• Unit 7.27 Detection of Histone H2AX Phosphorylation on Ser‐139 as an Indicator of DNA
# G, T1 \% O* R) n6 w  i8 F4 hDamage (DNA Double‐Strand Breaks)  M& v8 k, I8 n" h) k
• Unit 7.28 RNA and DNA Aptamers in Cytomics Analysis
& O5 a! T. s2 D% q$ g• Unit 7.29 Nuclear DNA Content Analysis of Plant Seeds by Flow Cytometry1 o! J5 q' W/ W% D; I
• Unit 7.30 Estimation of Relative Nuclear DNA Content in Dehydrated Plant Tissues by Flow
( p1 ?, q5 P: q* f- ?: qCytometry, c+ O/ G( R  U( D2 q  B) X+ V9 w
• Unit 7.31 Assessment of Cell Proliferation by 5‐Bromodeoxyuridine (BrdU) Labeling for% P" t' r: s" n- V: {
Multicolor Flow Cytometry9 ~/ k& N/ v0 H) U9 D8 u
• Unit 7.32 Uncompensated Polychromatic Analysis of Mitochondrial Membrane Potential Using
( t; ^/ f% t$ U1 \' e, v9 kJC‐1 and Multilaser Excitation; v8 A$ D+ k" h2 l! K4 {
• Unit 7.33 SYTO Probes: Markers of Apoptotic Cell Demise
5 a; Z, b& `; A6 o• Unit 7.34 Cell Proliferation Method: Click Chemistry Based on BrdU Coupling for Multiplex
1 Y0 {/ J# R3 eAntibody Staining+ q) Q5 p0 L' s4 e- T
• Unit 7.35 Assessment of Histone Acetylation Levels in Relation to Cell Cycle Phase5 J' r% G4 Z9 i$ l3 Q7 O
• Unit 7.36 Click‐iT Proliferation Assay with Improved DNA Histograms6 G9 T7 q2 n: d1 v& H4 P9 X
• Unit 7.37 High‐Resolution Multiparameter DNA Flow Cytometry for the Detection and Sorting of3 C) f  w4 W  H  B3 q6 \6 v
Tumor and Stromal Subpopulations from Paraffin‐Embedded Tissues
& p! t/ C/ a8 \9 V9 b) y  J9 R• Unit 7.38 Dual‐Pulse Labeling Using 5‐Ethynyl‐2′‐Deoxyuridine (EdU) and 5‐Bromo‐2′‐
& l- U1 d3 T% f/ v5 GDeoxyuridine (BrdU) in Flow Cytometry
0 y: n" p; J1 ~/ V8 l0 p) o3 w; t• Unit 7.39 High‐Resolution Cell Cycle and DNA Ploidy Analysis in Tissue Samples" m" _0 D: U& h4 _/ C5 O! i
• Unit 7.40 Zinc Fixation for Flow Cytometry Analysis of Intracellular and Surface Epitopes, DNA
3 A2 v: N2 U: _: N9 a( tContent, and Cell Proliferation: f6 g! u2 V/ d9 P" c0 ?
• Unit 7.41 High‐Resolution Cytometry for High‐Content Cell Cycle Analysis
/ ?+ w6 ]/ w1 ]' p$ O• Unit 7.42 Confocal Microscopy for High‐Resolution and High‐Content Analysis of the Cell Cycle
3 J. ^( F) B8 a$ V. T9 R) b0 `• Unit 7.43 Application of Click Chemistry Conditions for 5‐Bromo‐2′‐Deoxyuridine Determination
; @" ]' E4 [1 ]7 I, S% vThrough Fenton and Related Reactions  t$ u% V) X# R. E) i
• Unit 7.44 Flow Cytometry of Murine Spermatocytes
$ Q! J8 S6 ?# M: m9 L* N& y• Unit 7.45 Simultaneous, Single‐Cell Measurement of Messenger RNA, Cell Surface Proteins, and. |' u7 S5 H. i" d1 p$ Q0 _$ N
Intracellular Proteins
; H* M# O4 d+ r3 e4 w" L• Unit 7.46 Measurement of Low‐Abundance Intracellular mRNA Using Amplified FISH Staining  _3 d) y) f% P2 P4 X* G3 J
and Image‐Based Flow Cytometry/ @+ o- T3 g! i
• Unit 7.47 Measurement of T‐Cell Telomere Length Using Amplified‐Signal FISH Staining and
5 z' M8 I" k1 n7 v0 a0 L) CFlow Cytometry8 O7 U; f% m) H$ u% A  Y0 ]
• Chapter 8 Molecular Cytogenetics
! }5 A. x* u1 m% Y2 t• Introduction
7 z. ~. Z# }$ o- K3 W• Unit 8.1 Overview of Fluorescence In Situ Hybridization Techniques for Molecular Cytogenetics
. U% J' t' `) x• Unit 8.2 Basic Preparative Techniques for Fluorescence In Situ Hybridization9 ~% p3 i" M  x* l. x' g' j
• Unit 8.3 Probe Labeling and Fluorescence In Situ Hybridization
% N0 @  `4 C6 N• Unit 8.4 Immunocytochemical Detection
3 B7 u( l% f7 r4 m% G• Unit 8.5 Processing and Staining of Cell and Tissue Material for Interphase Cytogenetics
- n. T3 X4 ?6 z8 B/ T8 M• Unit 8.6 Advanced Preparative Techniques to Establish Probes for Molecular Cytogenetics
+ ~! f8 b2 m# e' g8 n' a& Q• Unit 8.7 Combination DNA/RNA Fish and Immunophenotyping
* |: O. h4 X1 R( A• Unit 8.8 Single‐Nucleotide Sequence Discrimination In Situ Using Padlock Probes/ M* l" l9 [+ a9 P
• Unit 8.9 Tyramide Signal Amplification (TSA) Systems for the Enhancement of ISH Signals in/ N& o5 S+ a5 S7 {' m
Cytogenetics
# r' l' S# y  M4 P; Y2 w• Unit 8.10 Molecular Combing
; N& J; z' M$ x& T• Unit 8.11 Principles and Applications of PRINS in Cytogenetics
0 H9 z4 Y& z0 t' v7 w. i6 e2 [• Unit 8.12 Comparative Genomic Hybridization (CGH)—Detection of Unbalanced Genetic8 C% Q' M+ j* h8 [# A7 I1 w
Aberrations Using Conventional and Micro‐Array Techniques' y$ \* E. R" Q- P+ D
• Unit 8.13 Combined Immunofluorescence and FISH: New Prospects for Tumor Cell1 p* W6 z/ W5 q6 z# Z2 \
Detection/Identification+ I0 f+ S" Z% N6 a% y
• Unit 8.14 Application of Flow‐FISH for Dynamic Measurement of Telomere Length in Cell( W! h- J$ ?" z
Division
: O3 J$ _" z7 X( G( z- d• Chapter 9 Studies of Cell Function) V, ]) k9 D3 U+ I" v- l
• Introduction
3 P# y$ K7 |. Q( Z• Unit 9.1 Overview of Functional Cell Assays- b7 _! b  n& G( f! l3 Z
• Unit 9.2 Assessment of Cell Viability. i6 B9 h: z. K& @- J
• Unit 9.3 Flow Cytometric Measurement of Intracellular pH
3 T9 M. A2 e2 ?% |; b• Unit 9.4 Analysis of Intracellular Organelles by Flow Cytometry or Microscopy
0 B& l3 z" J) n3 d0 K  N9 `. x* k" e+ ?• Unit 9.5 Reporters of Gene Expression: Enzymatic Assays
+ Z* C5 F, s! s; o• Unit 9.6 Estimation of Membrane Potential by Flow Cytometry
2 O: C: S/ _% j" [' o! q• Unit 9.7 Oxidative Metabolism& i! Q4 J$ u# b5 \4 J9 [' C2 `: v/ ?
• Unit 9.8 Measurement of Intracellular Ions by Flow Cytometry
' {" B7 b# M. W7 q• Unit 9.9 Intracellular Cytokines( }# t4 S' |' w1 o
• Unit 9.10 Assays of Natural Killer (NK) Cell Ligation to Target Cells
9 V% W6 W3 w; L- S* f* r1 S, l• Unit 9.11 Flow Cytometric Analysis of Cell Division by Dilution of CFSE and Related Dyes% J% M* |( u4 ]/ y: K# P$ o
• Unit 9.12 Fluorescent Proteins for Flow Cytometry
% n% }  f6 g1 Z; i) \3 x  k5 o* j# m• Unit 9.13 In Vitro Invasion Assays: Phagocytosis of the Extracellular Matrix. y  w: p4 |  i# Q
• Unit 9.14 Flow Cytometric Analysis of Mitochondrial Membrane Potential Using JC‐1" M% a$ |6 J$ Y" X
• Unit 9.15 Multiparameter Analysis of Physiological Changes in Apoptosis# U  c$ ~1 Q& U" O$ u3 ?; g% g2 w
• Unit 9.16 Signal Transduction During Natural Killer Cell Activation, l. f/ W1 j8 Q: q. _1 L
• Unit 9.17 Assessment of Surface Markers and Functionality of Dendritic Cells (DCs)
% Z5 S0 n& r. w! w, n2 D, C; ?  [6 s! m' r• Unit 9.18 Stem Cell Identification and Sorting Using the Hoechst 33342 Side Population (SP)
. s" T! R2 R. S& c5 u• Unit 9.19 Assessment of Phagocyte Functions by Flow Cytometry% j* s  `- w, B5 @6 j% t8 R
• Unit 9.20 Flow Cytometric Analysis of Calcium Mobilization in Whole‐Blood Platelets% d7 M0 C* S* |. }4 l
• Unit 9.21 Flow Cytometric Analysis of Cytokine Responses in Stimulated Whole Blood:( x8 g) |) C6 |8 t, J5 m
Simultaneous Quantitation of TNF‐α‐Secreting Cells and Soluble Cytokines
/ v- \7 Y, G/ ^4 t7 j. J; Z  U5 Y! W• Unit 9.22 Optimized Whole‐Blood Assay for Measurement of ZAP‐70 Protein Expression5 G$ U3 @1 M! V! B" W9 d6 A' V
• Unit 9.23 Flow Cytometry of the Side Population (SP)7 I7 V- }  J* r  F5 A  u, a
• Unit 9.24 High‐Throughput Cytotoxicity Screening by Propidium Iodide Staining
/ L: j4 u. m. A8 X6 x$ h% w, E• Unit 9.25 Advanced Application of CFSE for Cellular Tracking
0 J4 s* q+ G3 J$ a: D) ^: i' ~• Unit 9.26 Immunophenotyping and DNA Content Analysis of Acetone‐Fixed Cells# F5 c/ G, m  B; {# h0 P" ~, c
• Unit 9.27 Whole Blood Processing for Measurement of Signaling Proteins by Flow Cytometry
0 R5 q1 R& i5 w9 H( _/ `+ W& R• Unit 9.28 Measurement of Cytoplasmic to Nuclear Translocation
. ~0 g' z' H; a* ^; R( }4 \% t7 A& b* |• Unit 9.29 Overview of Very Small Embryonic‐Like Stem Cells (VSELs) and Methodology of Their" W+ u/ s+ g. N2 ?
Identification and Isolation by Flow Cytometric Methods
/ O1 q* d# p8 w# [, x' {• Unit 9.30 Stem Cell Side Population Analysis and Sorting Using DyeCycle Violet) L( G' }) Y* m5 P
• Unit 9.31 Measurement of Phagocytosis and of the Phagosomal Environment in, a& B7 f; Z$ R; }/ Y0 ]; h
Polymorphonuclear Phagocytes by Flow Cytometry, @6 g$ I  _" _0 y9 U
• Unit 9.32 Yeast Cell Cycle Analysis: Combining DNA Staining with Cell and Nuclear Morphology/ V1 t, ?4 ?7 e8 o8 H+ S9 l2 u
• Unit 9.33 Identification of Endothelial Cells and Progenitor Cell Subsets in Human Peripheral, b  n& V& f6 p* p
Blood
$ ^  N" L& O' g  d• Unit 9.34 Amine‐Reactive Dyes for Dead Cell Discrimination in Fixed Samples. P" f, v8 s8 Z$ M
• Unit 9.35 Detection of Intracellular Glutathione Using ThiolTracker Violet Stain and
4 H2 n1 q. l! N: `4 PFluorescence Microscopy3 O( k9 `7 E# d. M
• Unit 9.36 In Situ Proximity Ligation Assay for Microscopy and Flow Cytometry
% z' o/ X  D% N% D' u• Unit 9.37 Assessing Mitochondrial Redox Status by Flow Cytometric Methods: Vascular
1 f8 @8 c$ U, o$ _7 T/ Q9 SResponse to Fluid Shear Stress
+ ?+ z! M4 O! y6 |4 ~5 k• Unit 9.38 A Violet Ratiometric Membrane Probe for the Detection of Apoptosis) d/ S5 R9 f/ R' N$ O& l
• Unit 9.39 Ex Vivo Imaging of Excised Tissue Using Vital Dyes and Confocal Microscopy( H& [4 C" |; Q$ O7 P' ^$ v0 q
• Unit 9.40 Flow Cytometry‐Based Quantification of Cell Proliferation in the Mixed Cell Co‐Culture
, s) [& W+ _& ]. g; E# [• Unit 9.41 Kinetic Viability Assays Using DRAQ7 Probe
: W2 H" Z& y' t$ T$ e: A• Unit 9.42 Multiparameter Analysis of Apoptosis Using Lab‐on‐a‐Chip Flow Cytometry0 N' z3 m: L1 C+ [# i5 E% p
• Unit 9.43 Real‐Time Detection of Protein Trafficking with High‐Throughput Flow Cytometry7 ~6 k9 z6 S5 }4 g
(HTFC) and Fluorogen‐Activating Protein (FAP) Base Biosensor
. T  K0 M$ ]# G/ N: m5 o/ i! B6 U* Z• Unit 9.44 OpenSource Lab‐on‐a‐Chip Physiometer for Accelerated Zebrafish Embryo Biotests
# K& [. e8 X' f% ^# R; p• Unit 9.45 Measurement of Autophagy by Flow Cytometry
9 q# [; V9 Q/ i8 a9 X• Unit 9.46 Immunophenotyping of Paucicellular Samples0 P$ Q. c, K7 T4 z1 Q# [, c  g
• Unit 9.47 Attenuation of Replication Stress–Induced Premature Cellular Senescence to Assess: J, V0 q" I+ V" e; a% {
Anti‐Aging Modalities
1 D! _4 h1 H5 d$ H• Unit 9.48 High Throughput‐Based Mitochondrial Function Assays by Multi‐Parametric Flow) n8 q8 j5 Z7 X8 R$ @
Cytometry% ?, b. K% s: m' o
• Unit 9.49 Measurement and Characterization of Apoptosis by Flow Cytometry
( _$ c* F7 L" n4 u: t  w) D3 e• Unit 9.50 Identification of Human Memory‐Like NK Cells
4 ?1 I. N5 s: J+ L6 E# `  e• Unit 9.51 Quantitative Analysis of Cellular Senescence in Culture and In Vivo
, Z: q" V9 r: z• Unit 9.52 Method to Detect the Cellular Source of Over‐Activated NADPH Oxidases Using; c) H+ S; s6 }
NAD(P)H Fluorescence Lifetime Imaging$ t) X' }4 e) i4 ]
• Chapter 10 Data Processing and Analysis5 [2 v( @! T% s! ^9 Q& \
• Introduction' T' y6 l0 N$ _
• Unit 10.1 Data Management$ ~# J, H, y/ S  X1 J( ^5 m
• Unit 10.2 Data File Standard for Flow Cytometry, FCS 3.0
8 W4 K" h, f+ v• Unit 10.3 Listmode Data Processing
$ R$ _# z9 \: }+ k; z. s8 N8 L7 P* Z• Unit 10.4 Multidimensional Data Analysis in Immunophenotyping
2 }: B9 y" P6 y, U: G• Unit 10.5 Two‐Dimensional Image Processing and Analysis
; m! o, I9 V$ Z. P8 O/ I• Unit 10.6 Data Presentation) l" L3 w& p# I4 `
• Unit 10.7 Data Analysis Through Modeling
) N  ?3 p7 u$ b$ G9 {& o, }. @• Unit 10.8 Multivariate Analysis
, D4 e# X- ?5 b" e8 |- K5 s• Unit 10.9 Detection and Location of Hybridization Domains on Chromosomes by Image
1 x+ ^! L2 G1 D$ g  l, X/ k6 o7 ACytometry5 c% |7 |* ]: d  {+ Y
• Unit 10.10 Three‐Dimensional Image Visualization and Analysis4 D, I: n6 B$ W. l: b
• Unit 10.11 Image Processing and 2‐D Morphometry
8 [# h' `  r/ f; ?/ E" w9 y- ^• Unit 10.12 Dial‐In Flow Cytometry Data Analysis3 s0 c' C8 b" x/ I, Y( D4 \
• Unit 10.13 The Application of Data Mining to Flow Cytometry% U( r- U* y1 p! C, J
• Unit 10.14 Intensity Calibration and Flat‐Field Correction for Fluorescence Microscopes; O! U9 g- a, o8 _
• Unit 10.15 A Software Method for Color Compensation; f! k, ?" a2 z% D) Z8 q7 h
• Unit 10.16 Alternatives to Log‐Scale Data Display. v# p; |7 H$ l7 m( A& f
• Unit 10.17 Web‐Based Analysis and Publication of Flow Cytometry Experiments' X4 c% S7 M) a! }1 Y' E
• Unit 10.18 Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt)8 R" L* {* j& Y  x  c9 B
Compliant Manuscript Using the International Society for Advancement of Cytometry (ISAC)  h" E2 R  D& x7 M, E' C
FCS File Repository (FlowRepository.org)
0 E4 _6 {1 m3 e6 r9 i3 k9 n1 q3 q• Unit 10.19 Digital Data Acquisition and Processing3 z' a+ V2 m1 y8 p
• Chapter 11 Microbiological Applications8 D4 p; z# Q/ [4 B/ H  x# j* }
• Introduction
$ X2 W2 Y3 W' C4 k' f3 h5 c7 R• Unit 11.1 Overview of Flow Cytometry and Microbiology1 H+ Y3 F) p% K. z, J2 L5 L8 Y
• Unit 11.2 Flow Cytometry and Environmental Microbiology
( F- L0 A$ {* J6 Y• Unit 11.3 Estimation of Microbial Viability Using Flow Cytometry: R$ ^- e- |' q- h8 ^$ C
• Unit 11.4 Sorting of Bacteria
) @5 \  P  Q! P* c7 ?1 o• Unit 11.5 Detection of Borreliacidal Antibodies by Flow Cytometry& }1 m! \9 L4 W. L; P
• Unit 11.6 Flow Cytometric Detection of Pathogenic E. coli in Food/ J8 k: Q8 u" v$ a; h
• Unit 11.7 Mycobacterium tuberculosis Susceptibility Testing by Flow Cytometry/ x% U' L/ m: z/ o! ?( V& q
• Unit 11.8 Antibiotic Susceptibility Testing by Flow Cytometry
, h% C0 Q6 J( d7 v• Unit 11.9 Determination of Bacterial Biomass from Flow Cytometric Measurements of Forward" G! w2 T/ u  l) r1 X
Light Scatter Intensity
$ L4 ^+ u% V) l9 U• Unit 11.10 Flow Cytometry of Yeasts
$ Y  ^! Y( V0 e& L7 [, |* D• Unit 11.11 Enumeration of Phytoplankton, Bacteria, and Viruses in Marine Samples
1 p# E  T; m0 N• Unit 11.12 DNA/RNA Analysis of Phytoplankton by Flow Cytometry
( q  d; V9 _+ c- X4 p: K5 O• Unit 11.13 Cell Cycle Analysis of Yeasts
2 c' W  ^2 }2 q+ B" r• Unit 11.14 Flow Cytometric Assessment of Drug Susceptibility in Leishmania infantum
1 S# M! U+ V" @Promastigotes' B, f  Z; Z9 [  w; h
• Unit 11.15 Resolution of Viable and Membrane‐Compromised Free Bacteria in Aquatic8 N! v( ~. M8 R
Environments by Flow Cytometry0 T: X6 s1 [) L  H9 P
• Unit 11.16 Functional Assays of Oxidative Stress Using Genetically Engineered Escherichia coli
/ {5 R& [$ g9 |% N# I' gStrains5 _  b. Z- |: a; Z5 o
• Unit 11.17 Labeling of Bacterial Pathogens for Flow Cytometric Detection and Enumeration( R0 B- V/ x4 S2 ^/ s7 X! @7 t1 |2 O
• Unit 11.18 Detection of Extracellular Phosphatase Activity of Heterotrophic Prokaryotes at the
$ A$ M. b) S, N4 a3 [Single‐Cell Level by Flow Cytometry7 |0 |' @% |4 `7 v0 q4 K! G
• Unit 11.19 Life Cycle Analysis of Unicellular Algae
- c' K" p2 U: T4 z& Y5 [7 b• Unit 11.20 Cytometry in Malaria—A Practical Replacement for Microscopy?
2 O% t! Z2 T. M2 G% A• Unit 11.21 Large Particle Sorting to Isolate Live Parasitic Nematode Eggs
9 s5 l) o$ E! o+ b" q. W: ]) X' ?• Unit 11.22 High‐Throughput Particle Uptake Analysis by Imaging Flow Cytometry0 {& A* ^" H. a8 A' X9 Y+ k$ A8 H
• Chapter 12 Cellular and Molecular Imaging
: c/ I; H, v" o- X• Introduction
8 F) ^; x% {4 x4 a9 s$ F• Unit 12.1 Comparative Overview of Flow and Image Cytometry. F. b: L% H0 ?; f
• Unit 12.2 Basics of Digital Microscopy
8 V: r% t4 a2 n7 F% U• Unit 12.3 Modern Confocal Microscopy$ v  ], R3 _0 e. i: F9 ~7 b
• Unit 12.4 Time‐Lapse Microscopy Approaches to Track Cell Cycle and Lineage Progression at1 G1 C5 D' W5 f0 d9 ^2 E
the Single‐Cell Level
$ z9 g! p+ L' p6 q7 n" q  j; y- }• Unit 12.5 Three‐Dimensional Visualization of Blood and Lymphatic Vasculature in Tissue Whole/ a9 J2 M+ R% Y# M1 p8 D1 o4 I
Mounts Using Confocal Microscopy
! }3 h1 m4 J2 N0 M$ s• Unit 12.6 Quantitative Fluorescence In Situ Hybridization (QFISH) of Telomere Lengths in
# L6 T: a0 a* D% Y( O% OTissue and Cells( h% i- ~1 G+ @( Y4 Q; d! G
• Unit 12.7 Detecting Protein–Protein Interactions with CFP‐YFP FRET by Acceptor Photobleaching, d* [' f) M* f
• Unit 12.8 Measuring FRET in Flow Cytometry and Microscopy
3 ^: }) f/ Q# E7 X• Unit 12.9 Live‐Animal Imaging of Renal Function by Multiphoton Microscopy
8 u; p$ _& B8 p! Q  ?, e/ b0 E• Unit 12.10 Detecting Protein‐Protein Interactions In Vivo with FRET using Multiphoton0 h4 ]0 _! \3 v; R9 M1 b
Fluorescence Lifetime Imaging Microscopy (FLIM)- Y; @, ^- V+ z' Q' d
• Unit 12.11 Confocal Imaging of Cell Division
; I3 k, S$ {6 x# y/ i; D• Unit 12.12 From In Vitro to In Vivo: Imaging from the Single Cell to the Whole Organism, e* }2 X: ]  B$ g
• Unit 12.13 Use of Spectral Fluorescence Resonance Energy Transfer to Detect Nitric Oxide‐0 v! ?2 o0 A8 r
Based Signaling Events in Isolated Perfused Lung5 c6 o6 H' f5 }$ F# Q
• Unit 12.14 Flow Cytometric FRET Analysis of ErbB Receptor Tyrosine Kinase Interaction+ `9 o! ?( f, g) B) Y  o5 \4 e' s# |- Y
• Unit 12.15 Cryosectioning2 b$ t+ ^; i) r& I; O* i! f
• Unit 12.16 Immunohistochemistry; l! G1 ^7 P  |! G4 a7 y  y
• Unit 12.17 Simultaneous Optical Mapping of Intracellular Free Calcium and Action Potentials6 P. |5 W: N5 E- Z
from Langendorff Perfused Hearts& G3 y+ d; J+ A4 Z2 ]
• Unit 12.18 Total Internal Reflection Fluorescence (TIRF) Microscopy
. [: z# S' Y0 k( t0 d3 k' {• Unit 12.19 3D Deconvolution Microscopy
& x1 @; V0 _3 p! u9 l4 l• Unit 12.20 Approaches to Spectral Imaging Hardware& n1 f0 h$ u5 Q' w; a1 }
• Unit 12.21 From Image to Data Using Common Image‐Processing Techniques+ w- z+ q* Q1 y+ X/ {
• Unit 12.22 Setting Up and Running an Advanced Light Microscopy and Imaging Facility& Q. c2 V) m  h. e; u. _* w
• Unit 12.23 Photoactivation and Imaging of Optical Highlighter Fluorescent Proteins# A6 y' \3 p/ K& Z  u
• Unit 12.24 Practical Methods for Molecular In Vivo Optical Imaging3 U' ?. q3 H/ T6 Y  G
• Unit 12.25 Characterization of Surface FAS—Quantitative Morphological Analysis Using9 b) E: i! g: B& S& T. t" d
Quantitative Imaging Cytometry
' p- E* t* u# ?5 E2 L7 W* ]3 |• Unit 12.26 Two‐Photon Imaging of the Immune System, Q/ v5 l, i5 i
• Unit 12.27 Near‐Infrared Molecular Probes for In Vivo Imaging, A% f' g9 w, S
• Unit 12.28 Live Imaging of the Lung
8 j+ W" w& m1 K- \- y) d! \• Unit 12.29 Total Internal Reflection Fluorescence (TIRF) Microscopy Illuminator for Improved  f: ]  m, y6 R
Imaging of Cell Surface Events
( i  {4 M! I9 H! a9 V" h• Unit 12.30 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and' d4 R9 s+ H2 F" ^& c% }! E; A  |
Structures, Part I: BacMam Labeling and Reagents for Vesicular Structures5 g8 d5 r* F8 P" p+ W
• Unit 12.31 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and
4 u  D8 Q4 ]  J2 mStructures, Part II: Reagents for Non‐Vesicular Organelles
) {& }6 P. ^) A& j0 ~• Unit 12.32 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and
: j5 ?6 Q# T* Y1 |+ F% @6 {" ~( UStructures, Part III: Reagents for Actin, Tubulin, Cellular Membranes, and Whole Cell and+ H! _2 q" h" Q. K$ Q! b: v; I
Cytoplasm" E/ u8 V! @2 }6 f% x9 K
• Unit 12.33 A Rapid and Sensitive Automated Image‐Based Approach for In Vitro and In Vivo/ |5 Q4 s/ x0 n+ P. Z# v4 D
Characterization of Cell Morphology and Quantification of Cell Number and Neurite Architecture
7 M- w2 Q: f& N; |• Unit 12.34 Imaging Autophagy# M0 W7 }8 b3 n0 s& Q2 ]1 a
• Unit 12.35 The Application of KillerRed for Acute Protein Inactivation in Living Cells. O) ^$ v  z- j; n; e$ c
• Unit 12.36 Correlative Fluorescence and Electron Microscopy# Z& C, W5 ?5 {& Y4 C/ e3 k
• Unit 12.37 Light Sheet Fluorescence Microscopy (LSFM)
7 v: x  Q+ l5 v0 O• Unit 12.38 Semi‐Automated Object Tracking Methods in Biological Imaging( g  l$ d6 K% j3 b
• Unit 12.39 Cell Volume Measurements by Optical Transmission Microscopy
8 x5 Z% O6 J9 n# U+ U• Unit 12.40 Visualization of Telomere Integrity and Function In Vitro and In Vivo Using
3 ^+ v7 i& O, W9 a6 WImmunofluorescence Techniques
0 j9 T# _  m/ r/ G3 U& r. j• Unit 12.41 Microscopic Investigation of Protein Function in C. elegans Using Fluorescent5 x0 s! c3 V5 t2 c1 w' I. _
Imaging4 t9 c0 l# L8 j1 N; x
• Unit 12.42 In Vivo Immuno‐Spin Trapping: Imaging the Footprints of Oxidative Stress: y' h& q7 E8 Z
• Unit 12.43 High‐Content Microscopy Analysis of Subcellular Structures: Assay Development
' t1 J# ?# h1 A, v0 _8 e5 Jand Application to Focal Adhesion Quantification
% J. ]/ a8 n# x/ e; P0 V1 U) q3 C; X0 b• Unit 12.44 Automated Measurement of Blood Vessels in Tissues from Microscopy Images
) T# r+ o0 Q! l• Unit 12.45 Correlative Fluorescence and Electron Microscopy in 3D—Scanning Electron  [# Y+ S" h: n/ q6 l
Microscope Perspective
: n+ u& _6 l7 N5 I& {' \7 h• Chapter 13 Multiplexed and Microparticle‐Based Analyses/ i- P- d- A, V; T/ h( ~% \4 r7 t8 n
• Introduction
. b/ z* R+ p. S. \* A5 y• Unit 13.1 Multiplexed Microsphere‐Based Flow Cytometric Immunoassays2 B7 m2 o7 l; l2 C) n$ s) T
• Unit 13.2 Microsphere Surface Protein Determination Using Flow Cytometry3 N, j4 z% T% b4 L5 t0 [
• Unit 13.3 Use of Microsphere‐Supported Phospholipid Membranes for Analysis of Protein‐Lipid
' `' _( [# {7 o- h6 Y1 O- T- ]Interactions
+ }# z/ l% r- J9 ]) q2 n# P5 M  h$ F• Unit 13.4 Multiplexed SNP Genotyping Using Primer Single‐Base Extension (SBE) and) F4 B/ p! O0 H. N& u' x
Microsphere Arrays( T) N4 ~+ y. f/ P2 Z
• Unit 13.5 BeadCons: Detection of Nucleic Acid Sequences by Flow Cytometry
; ~( C" [, }$ c) n) A1 L' v• Unit 13.6 Characterization of Nuclear Receptor Ligands by Multiplexed Peptide Interactions; J. K* J( I; R
• Unit 13.7 Detection of Gene Fusions in Acute Leukemia Using Bead Microarrays
, E- c& X; y4 f- d5 ]/ P& [) T• Unit 13.8 Reagents and Instruments for Multiplexed Analysis Using Microparticles- M5 N0 U# P+ J$ s/ c5 \. M% ~
• Unit 13.9 Multiplexed Detection of Fungal Nucleic Acid Signatures9 n" ?6 C9 C! U$ a1 {2 ]+ [3 Q
• Unit 13.10 Multiplexed Analysis of Peptide Antigen‐Specific Antibodies4 j* X' C+ W4 v: a  M
• Unit 13.11 Use of Flow Cytometric Methods to Quantify Protein‐Protein Interactions/ J* W1 v2 Z' t
• Unit 13.12 Microsphere‐Based Flow Cytometry Protease Assays for Use in Protease Activity- h: _2 Y: C3 d, c# C- `# e5 P
Detection and High‐Throughput Screening4 F7 F& x: E% `# s$ M: k5 e7 B. C$ g
• Unit 13.13 Application of the PrimRglo Assay Chemistry to Multiplexed Bead Assays
0 T' i# D5 x/ F; J• Unit 13.14 Flow Cytometry of Extracellular Vesicles: Potential, Pitfalls, and Prospects
( f9 {( q8 g; ~4 `, ~• Unit 13.15 Optimized MOL‐PCR for Characterization of Microbial Pathogens
( W/ y  Y( u5 v: N: b3 Y• Appendix 1 Abbreviations and Useful Data" }+ c! ?7 U: i% x* X4 o8 M
• Appendix 1A Abbreviations Used in this Manual
; o: F6 I! }/ |4 i7 z$ O5 [( H• Appendix 1B Common Conversion Factors
1 d* r* d/ ^( S6 O; N% y+ i( y• Appendix 2 Stock Solutions, Equipment, and Laboratory Guidelines( @7 d, T4 ^& S& R2 U7 o8 I+ P
• Appendix 2A Common Stock Solutions, Buffers, and Media
/ }0 e5 ?  V' u, R; W• Appendix 3 Commonly Used Techniques
) i: w2 J. v7 K2 G- {3 `• Appendix 3A Cell Counting- D0 ?/ c) Q6 {+ G" L
• Appendix 3B Techniques for Mammalian Cell Tissue Culture
7 I7 {( T8 |( [( C' W• Appendix 3C Diagnosis and Treatment of Mycoplasma‐Contaminated Cell Cultures* d- a' }* c2 W/ a6 N) V
• Appendix 3D Wright‐Giemsa and Nonspecific Esterase Staining of Cells2 J! k# x* z" ]) ]
• Appendix 3E Techniques for Bacterial Cell Culture: Media Preparation and Bacteriological Tools' }$ v7 D% x; N" f5 e7 n
• Appendix 3F Growing Bacteria in Liquid Media
, z0 o* Y* c0 Q4 w• Appendix 3G Growing Bacteria on Solid Media0 Y  u. n: c2 T" M
• Appendix 3H Importing Biological Materials- d0 L6 w$ C0 L$ x
• Appendix 3I Production of Polyclonal Antisera5 F- T% V' F. Y0 g* |
• Appendix 3J Production of Monoclonal Antibodies1 {' n, d1 y) B1 u
• Appendix 3K Enzymatic Amplification of DNA by PCR: Standard Procedures and Optimization

Rank: 2

积分
64 
威望
64  
包包
1782  
藤椅
发表于 2017-7-5 15:18 |只看该作者
进行溜达一下  

Rank: 2

积分
101 
威望
101  
包包
1714  
板凳
发表于 2017-7-6 09:54 |只看该作者
干细胞之家微信公众号
自己知道了  

Rank: 2

积分
97 
威望
97  
包包
1659  
报纸
发表于 2017-8-2 19:34 |只看该作者
干细胞治疗糖尿病  

Rank: 2

积分
51 
威望
51  
包包
1590  
地板
发表于 2017-9-12 00:08 |只看该作者
病毒转染干细胞

Rank: 2

积分
63 
威望
63  
包包
1789  
7
发表于 2017-9-13 09:18 |只看该作者
经过你的指点 我还是没找到在哪 ~~~  

Rank: 2

积分
99 
威望
99  
包包
1587  
8
发表于 2017-10-5 06:45 |只看该作者
鉴定完毕.!  

Rank: 2

积分
71 
威望
71  
包包
1591  
9
发表于 2017-10-7 23:35 |只看该作者
看贴回复是好习惯  

Rank: 2

积分
108 
威望
108  
包包
1728  
10
发表于 2017-10-9 08:54 |只看该作者
我帮你 喝喝  
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-3 10:26

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.