干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索

MicroRNA

已有 5421 次阅读 2011-9-24 20:24 |关键词:学校 border 大世界 阶下囚 爱心

miRNA详述(2011-03-07 21:27:25)

引述

精准的基因表达调控对生物体的生长发育和功能至关重要。过去对基因表达调控的研究主要集中在转录因子介导的基因转录调控方面(激活或抑制基因转录)。而RNA一度被认为是DNA和蛋白质之间的“过渡”,但越来越多的证据清楚的表明RNA在生命的进程中扮演的角色远比早前的设想重要,晚近发现一系列小分子非编码RNA(small noncoding RNA),包括miRNA (microRNA),siRNA (small interfering RNA),piRNA (piwi-interacting RNA)和esiRNA (endogenous siRNA)等,这些小RNA组成了RNA调控网络,在转录水平、转录后及表观遗传等水平控制基因的表达,参与调控包括细胞增殖、分化和凋亡等进程,影响着生物体的生长发育和多种病理过程。小RNA的发现也揭示了真核生物全新的基因表达调控方式。

miRNAs是一类重要的内源性小的非编码RNA分子,大约由21-25个核苷酸组成。miRNA通常靶向一个或者多个mRNA,通过抑制翻译或降解靶标mRNAs而调节基因的表达。人类基因组中大约存在超过1000条miRNA,其在多种人体细胞类型中大量表达,估计其调节超过60%的哺乳动物基因。miRNA在植物界和后生动物界间表现不同的特性。在植物中,miRNA与其靶基因通过近乎完美互补的方式相结合;而在后生动物中,经常是一条miRNA可以和靶基因的多个位点相结合,或是一条miRNA调节多种靶基因。另外,在后生生物中,miRNA靶位点位于mRNA的3’ UTR,而在植物中,miRNA靶位点可以位于3’ UTR,更多情况下是位于mRNA的编码区内。第一个miRNA在上世纪九十年代被发现,直到本世纪初才认识到这是一类在功能上保守的生物调节因子。在此时起,miRNA研究揭示其存在不同基因表达负调控形式,包括转录本降解和扣留(sequestering),翻译抑制等,并可能参与了对基因表达的正调控(转录和翻译活化作用)。总之,在不同形式的细胞和组织类型中发现了不同的miRNA表达形式,miRNA可能参与了多数生理过程;并且在多种病理状态下,miRNA呈现异常表达,这些异常表达miRNA在疾病发生、发展和转归中发挥了重要作用,当前,基于miRNA的治疗方式研究当前正在进行中。

miRNA的发现历史

miRNA是由Victor Ambros, Rosalind Lee和Rhonda Feinbaum等人在研究lin-14基因在调节线虫发育中作用时发现的。他们发现LIN-14蛋白丰度受到一个由lin-4编码的短RNA产物的调节,来自lin-4基因的61个核苷酸前体生成一个22个核苷酸的RNA,该RNA含有与lin-14 mRNA 3’ UTR部分互补的序列。这种互补特性为抑制lin-14翻译生成LIN-14蛋白的充分必要元件。然而在当时,lin-4却被认为是线虫中特有的现象而被忽视。直到2000年,第二个小RNA let-7被发现,let-7可以抑制lin-41, lin-14, lin-28, lin-42和daf-12等在发育转型中发挥重要作用基因的翻译。很快又发现let-7在多个物种间保守存在,表明在更广泛的生物物种中存在这种调节。

miRNA的命名术语

当前,发展了一套标准的miRNA命名系统,前缀mir后紧跟“-”和相应数字,数字通常显示名字的先后次序。而小写的mir-指pre-miRNA,如果使用大写的miR-则指成熟的miRNA。对于差别只有一到两个核苷酸的近似相同的miRNA,在命名时通常另外添加一个小写字母,例如miR-200a和miR-200b。为了区分物种来源,通常在miRNA的前面加上三个字母组成的前缀,如人源性的使用has,而绵羊(Ovis aries)来源的使用oar,其他如v表示来自病毒基因组,D表示果蝇源性的等。如果定位于不同基因组位置的前体miRNA可以生成完全一致的成熟miRNA,则通常使用外加的“-”加数字后缀来区别这种情况,例如hsa-mir-194-1和hsa-mir-194-2位于基因组的不同位置,而剪切生成相同的成熟miRNA序列hsa-miR-194。当两个成熟的miRNA来自于相同的前体miRNA的相反的两个臂,则使用“-3p”和“-5p”后缀(过去曾使用s和as表示,分别来自sense和antisense)。当相对表达水平已知时,通常使用星号表示该miRNA在表达水平上较其对应的反向臂miRNA低。例如miR-31和miR-31*分别来自于同一前体miRNA的两对应臂,且miR-31为主要存在形式。

miRNA的生物起源

约40%的miRNA基因位于蛋白的内含子中或是不编码蛋白的基因序列中,甚至位于外显子中。虽有例外,它们通常呈正向分布。因此,它们多数与其宿主基因一起受到调节。另有42-48% miRNA基因呈多顺反子形式排布,虽然这并不表示这成簇分布的miRNA在结构和功能上存在相似性,但它们共用一个启动子区域,由2-7个不同的环结构经剪切加工而来。其启动子在模序结构上与由RNA聚合酶II转录的其它启动子,如编码功能蛋白基因的启动子相似。DNA模版并不是成熟miRNA的最终形式,部分人类miRNA存在RNA剪辑,位点特异的RNA序列修饰导致其产物和DNA模版不一致,从而增加了miRNA的多样性,超出了基因组模版的数量范围。

miRNA的转录

miRNA通常由RNA聚合酶II (Pol II)转录生成。Pol II结合在以后形成发夹结构的颈环DNA序列附近。生成的转录本经修饰添加5’帽子结构和3’末端多腺苷酸尾巴结构,并剪切,生成的产物称为初级miRNA (pri-miRNA),该产物可能长达数千或数百核苷酸,可能包含多个miRNA环结构。RNA聚合酶III (Pol III)转录生成部分miRNA,尤其是上游为Alu序列,tRNAs和哺乳动物广泛散步重复(mammalian wide interspersed repeat (MWIR))启动子单元的miRNA。

miRNA的核内处理过程

单个pri-miRNA可能含一到六个miRNA前体。这些发夹结构每个由约70 nt左右的核苷酸组成。每个发卡结构附以部分序列以利于有效剪切处理。pri-miRNA中的双链发夹RNA结构被叫做DGCR8的核蛋白(DiGeorge Syndrome Critical Region 8,该蛋白与DiGeorge综合症关系密切,在非脊椎动物中称为"Pasha")辨认,DGCR8同Drosha酶一起形成微处理(microprocessor)复合体。在该复合体中,DGCR8组织Drosha蛋白的RNase III结构域使其在距离发卡结构约11个核苷酸处切割pri-miRNA,使其释放发卡结构。释放的发卡结构即为前miRNA(pre-miRNA), pre-miRNA在3’存在两个悬空的核苷酸,pre-miRNA 5’为磷酸集团,3’为羟基集团。在果蝇和线虫中存在由内含子直接剪切产生的pre-miRNA,并不经过微处理复合体过程,这种miRNA称为mirtrons。部分pre-miRNA可发生核RNA剪辑。多数情况下,作用于RNA的腺苷酸脱胺酶(adenosine deaminases acting on RNA, ADAR)催化腺苷酸生成次黄嘌呤核苷(inosine),RNA剪辑能够阻碍核内处理过程(例如导致pri-miR-142被核糖体酶Tudor-SN降解),并改变下游处理过程,包括在胞浆的miRNA处理和靶向特异性(如在中枢神经系统中改变miR-376种子区序列)。

miRNA的细胞核输出

Pre-miRNA发卡通过Exportin-5蛋白的核胞浆穿梭完成从核输出到胞浆过程。Exportin-5蛋白为karyopherin家族蛋白成员,该蛋白通过辨认Drosha RNase III酶切割留下来的3’两个悬空的核苷酸,介导pre-miRNA的输出,该过程由GTP提供能量完成。

miRNA的胞浆处理过程

在胞浆中,pre-miRNA发夹结构经RNase III Dicer切割处理。这种内源性核糖核酸酶(endoribonuclease)与发夹结构的3’相互作用并在环的3’和5’臂上完成切割,产生长约22 nt并不完美匹配的miRNA:miRNA*双链结构。不但发夹结构和颈环的大小影响了Dicer酶切割效率,miRNA:miRNA*双链结构的不完全匹配特性也影响了Dicer酶的切割效率。虽然双链结构中的任何一条都可能成为功能miRNA,但是通常只一链可能进入RNA诱导的沉默复合体(RNA-induced silencing complex, RISC),在RISC中与其相应靶基因mRNA发生相互作用。

miRNA在植物中的生成情况(Biogenesis

miRNA在植物中的生成过程与在后生动物中不同,区别主要在核处理和输出过程上。与后生动物在核和胞浆中由两种不同的酶切割不同,在植物中,由Dicer酶的同源基因Dicer样酶1(Dicer-like1, DL1)完成切割处理过程。DL1只在植物细胞核中表达,表明两种反应都发生在核内。植物miRNA:miRNA*双链结构转运出核前,其3’突出序列经RNA甲基化转移蛋白Hua-Enhancer1 (HEN1)甲基化修饰。而后此双链结构被Hasty (HST)由核输出至胞浆,在胞浆中解离生成成熟的miRNA,进入RISC。Hasty蛋白即为后生动物中Exportin 5蛋白的同源蛋白。

RNA诱导的沉默复合体

RNA诱导的沉默复合体(RISC)除了包括成熟的miRNA外,还包含Dicer蛋白和多种其它相关蛋白。RISC也被称为microRNA核酸蛋白复合体(microRNA ribonucleoprotein complex, miRNP),掺入RISC的miRNA也被称为miRISC。现在认为Dicer对pre-miRNA的处理与双链螺旋的解旋是偶联在一起的。通常情况下只有一条链进入miRISC,对双链中某一条链的偏好选择基于相对另一条链的热动力学不稳定性和更差的碱基配对能力。颈环的位置可能也影响了掺入链的选择性。不进入RISC的链被称为passenger链,其miRNA被冠以星号(*),具有更低的稳定性,通常情况下被降解掉。在某些情况下,两条链都具有活性,成为针对不同靶基因mRNA的功能miRNA。Argonaute (Ago)蛋白成员在RISC功能中处于中心地位,该类蛋白为miRNA诱导的基因沉默的必需组分,其含有两个保守的RNA结合结构域。PAZ结构域结合成熟miRNA的3’序列,PIWI结构域组装核酶H (ribonuclease-H),并与导引链(miRNA)5’端结合。Ago蛋白与成熟miRNA结合使其正确朝向,以便对靶基因mRNA完成切割。一些Ago蛋白,例如人Ago2,直接切割靶转录本;另外,Ago蛋白也可能招募其它蛋白行使翻译抑制功能。在人类基因组中含有8个Argonaute蛋白,根据序列相似性分为两个家族:AGO和PIWI。AGO蛋白有4个成员,存在于所有哺乳动物细胞中,在人类这类蛋白称为E1F2C/hAgo;PIWI存在于精细胞和造血干细胞中。RISC的其它组成成分还包括TRBP [human immunodeficiency virus (HIV) transactivating response RNA (TAR) binding protein],PACT (protein activator of the interferon induced protein kinase (PACT),SMN复合体,脆性X智障蛋白(fragile X mental retardation protein,FMRP)和Tudor-SN (Tudor staphylococcal nuclease-domain-containing protein)等。

miRNA介导的基因沉默模式

miRNA与靶mRNA的典型作用方式主要有两种。在大多数情况下,复合物中的单链miRNA与靶mRNA的3’ UTR不完全互补配对,阻断靶基因的翻译,从而调节基因表达。这种方式主要影响蛋白表达水平,并不影响mRNA的稳定性。近来,有研究对翻译抑制理论提出质疑,发现被抑制的靶mRNAs和miRNAs共同聚集于胞浆中被称为P小体(processing bodies,P-bodies)的区域,这个区域还浓缩了许多参与mRNA降解的酶类。P小体可能是作为未翻译mRNA进行暂时的可逆储存的容器,减少一些特定P小体组成蛋白的表达能够缓和miRNA介导的基因表达抑制作用。P小体是胞浆中的一定区域,它包含参与多种转录后过程的蛋白质,例如:mRNA降解(mRNA degradation)、无义介导mRNA衰退(nonsense-mediated mRNA decay, NMD),转录抑制及RNA介导的基因沉默(RNA-mediated gene silencing)。

另一种作用方式与siRNA类似,当miRNA与mRNA完全互补配对时,Ago2蛋白通过切割mRNA直接导致其降解,实现基因沉默。以siRNA参与的RNAi为例:siRNA可与RISC结合,作为模板识别mRNA靶子,通过碱基互补配对原则,mRNA与siRNA中的反义链结合,置换出正义链。双链mRNA在Dicer酶、ATP和解旋酶共同作用下产生22 nt左右的siRNA,siRNA继续同RISC形成复合体,与siRNA互补的mRNA结合,使mRNA被RNA酶裂解。这个过程也称为转录后基因沉默(PTGS)。

总之,当前认为miRNA以何种方式与目的基因作用和miRNA与目的基因的配对程度有关。miRNA与目的基因配对不完全时,miRNA就以抑制目的基因的表达发挥作用;miRNA与目的基因某段序列配对完全时,就可能引起目的基因在互补区断裂而导致基因沉默。另外,miRNAs有时候也导致组氨酸修饰和启动子区的DNA甲基化,从而影响靶基因的表达。除此外,近来发现快速脱腺苷酸化(accelerated deadenylation)是miRNA抑制基因表达的新机制。在哺乳动物细胞中发现miR-125b和let-7能够促进mRNA聚腺苷酸尾巴(polyA tail)的去除。用3’组蛋白茎-环结构取代聚腺苷酸尾巴,不但可以消除miR-125b对mRNA含量的影响,还可以降低对蛋白质合成的作用,可见miRNA能通过降低翻译效率和聚腺苷酸化mRNA的浓度来抑制基因表达。

miRNA介导的基因沉默模式机制

miRNA的翻译起始抑制

目前对miRNA翻译起始抑制机制主要有如下几种观点:认为miRNA可能通过抑制全能性核糖体的组装而阻断翻译起始。EIF6是一种可以抑制核糖体40S和60S亚基结合、阻断80S全能性核糖体形成的蛋白,EIF6与Ago/RISC直接相互作用,并且在哺乳动物和线虫中,缺失EIF6影响miRNA介导基因沉默。然而,RISC是否通过与EIF6相互作用诱导40S和60S核糖体解聚还有待于进一步的研究。第二种观点根据miRNA抑制要求靶mRNA m7G帽子的存在,认为miRISC可能抑制翻译起始复合物的形成。研究发现,增加体外系统中eIF4F复合物(含有m7G帽子结合蛋白、翻译起始因子eIF4E)水平可回复miRNA翻译抑制;另一个研究发现,Ago2中间结构域具有结合m7G帽子的活性,Ago2经miRNA招募到靶mRNA 3’ UTR,与起始复合物eIF4E/G竞争性结合m7G帽子,抑制翻译起始复合物的形成。第三种观点认为miRNA可能通过阻止polyA结合蛋白polyA binding protein (PABP)与mRNA结合影响翻译起始。miRNA引起靶mRNA脱腺嘌呤反应,导致RNA的polyA尾巴缩短,使PABP结合mRNA受阻,从而影响翻译起始。

miRNA翻译起始后抑制

研究发现一些被miRNA抑制的mRNA与翻译活跃的多核糖体偶联,说明这些miRNA的抑制作用不是发生在翻译起始水平。此外,经内部核糖体进入位点(Internal Ribosome Entry Site, IRES)起始、不依赖于mRNA m7G帽子的翻译过程也可以被miRNA抑制,证明miRNA抑制发生在翻译起始之后。虽然有如上证据,但是关于miRNA究竟如何在翻译起始后发挥抑制作用,目前还没有一致的结论。有研究者推测miRNA可能引起新生多肽链的翻译同步降解,或者是在翻译延伸过程中,miRNA能引发翻译提前终止。

miRNA介导mRNA衰减

miRNA可以诱导与之不完全配对靶mRNA衰减,下调靶mRNA的水平。发现Ago蛋白定位于降解mRNA的RNA颗粒(RNA granules),如P小体中,这些RNA颗粒中包含mRNA降解酶,提示这些mRNA降解酶可能参与miRNA介导的mRNA衰减。此外,miRISC的核心成分Ago家族蛋白有多种异构体,其中一些成员的内切酶活性也可能协助miRNA介导的mRNA切割或衰减。这些证据支持miRNA可以直接或间接介导靶mRNA的降解。

RNA颗粒扣押、降解或储存靶mRNA

胞浆的RNA颗粒,如P小体和SG(Stress Granules)颗粒,是细胞储存处于翻译抑制状态mRNA的场所,在此,mRNA被降解或/和释放重新进入翻译机器,在转录后水平的基因表达调控中具有重要的作用。P小体被认为是细胞mRNA代谢场所;SG颗粒因特异性地在受胁迫条件下形成而得名,P小体和SG颗粒可能是miRNA胞内发挥作用的重要场所:在miRNA存在下,miRISC中的核心组分及与miRISC结合的mRNA定位于P小体和SG颗粒中;抑制P小体的形成可抑制miRNA介导的翻译抑制,抑制RISC也同样抑制P小体的形成。推测被miRISC结合的mRNA进入P小体和SG颗粒中,RNA颗粒的翻译抑制子使mRNA处于翻译抑制状态,从而实现基因沉默,靶mRNA被扣押后随即进行一个mRNA衰减或储存的分拣步骤,P小体和SG颗粒可能分工执行mRNA降解和暂时储存功能。

miRNA正调控和去抑制

最近的研究发现了一些新型的miRNA作用方式,如miRNA正调控和去抑制作用等。miRNA不总是基因表达的负调控因子,在一些条件下,miRNA上调基因表达。在细胞周期过程中,miRNA效应在抑制和活化作用间摆动,在G0期细胞中,miRNA活化翻译上调基因表达,而在其它时期发挥抑制作用。另外还发现一些增殖细胞中表达的mRNA 3’ UTR保守性地缩短,导致miRNA的靶位点减少,从而避免miRNA负调控作用。

miRNA的周期(turnover

miRNA需要快速实现周期轮转以满足miRNA表达谱快速改变的需求。当miRNA在胞浆中成熟时,Argonaute蛋白结合miRNA过程普遍被认为具有稳定引导链的作用,而同时互补的passenger链被降解消除。argonaute蛋白倾向于保留下可以调控大量靶基因的miRNAs,而清除靶向基因较少和没有任何靶基因的miRNA。在动物中,成熟miRNA的衰减由5’-3’外切核酸酶XRB2(又称为Rat1p)负责,在植物体内由SDN (small RNA degrading nuclease)家族成员来执行此功能,但方向相反(3'-5'),在动物基因组内也编码与植物SDN酶相似的酶,但其作用还不清楚。在多种模式生物(包括拟南芥)的研究均表明miRNA的多种个修饰影响miRNA的稳定性,植物成熟的miRNA可通过3’的甲基化增强miRNA的稳定性。而2'-O甲基化阻止尿苷酰转移酶在此位添加尿嘧啶(该位点的尿嘧啶化和miRNA的降解有关),同时,有观点认为尿嘧啶化具有保护miRNA的作用,因此,当前对该种修饰的确切作用还没有定论。尿嘧啶修饰不止在植物,在动物中也存在。植物和动物miRNA都可以在3’发生腺苷酸修饰,例如肝脏高丰量表达miRNA miR-122,miR-122在丙型肝炎中具有重要作用,miR-122的腺苷酸修饰具有稳定miRNA的作用,在植物中的研究也发现腺苷酸修饰可以延缓miRNA的降解速率。

miRNA的演化历程(进化)

miRNA因其低的进化率成为重要的分类学标志物。miRNA的起源与形态进化有关,使基因表达调节更精细,更具有特异性,更有利于复杂器官的生成,并可能最终导致复杂生命的出现。事实上,形态学进化上的大爆发通常伴随了miRNA的激增。miRNA通常起源于位于DNA非编码区域随机生成的发夹结构(常位于内含子和基因间),部分miRNA源于已存在miRNA的复制和修饰。最近起源的miRNA进化的速度(如核酸置换)与其它非编码DNA相当,暗示其通过中性漂变进化;起源古老miRNA均有很低的进化速度,通常每百万年一个碱基置换的速率都不到,表明miRNA取得一项功能经历了极其精准的选择过程。在这种情景下,miRNA很难在基因组中丢失。而最近起源的miRNA,通常可能没有重要的功能,也更容易在进化中丢失。这种特性使miRNA在进化学上成为杰出的分子标志物,可能有利于解决在分类学上存在争议的类群(如节肢动物)。

miRNA是在多数真核生物中普遍存在的特性,从褐藻到后生动物都存在。到2011年3月止,已经在各个物种界共发现了15170多miRNA。虽然在细菌中没有发现miRNA,但是在细菌中同样存在短的RNA序列(通常50到数百个核苷酸长),发挥了与miRNA相类似的功能。

miRNA的识别和预测

miRNA具有独特的结构和生物特性:包括miRNA前体具有发夹或折叠的二级结构,不含有大的内部环状结构和突起,成熟的miRNA位于发夹结构的颈部,由Dicer加工而成,成熟miRNA长约22 nt左右,其序列在不同物种间保守等。现今有多种发现miRNA的技术,可分为计算机软件预测和分子生物学实验方法两类。

计算机分析法

利用miRNA结构和构相特征预测基因组中可能存在的miRNA,然后在此基础上通过实验方法证实。随着不同生物基因组测序的完成和对miRNA结构和生化特征的深入认识,利用计算机程序对基因序列进行搜索大大提高了miRNA的鉴定效率。人们设计了多种miRNA预测软件,包括miRseeker,snarloop,MirScan等。计算机预测法的主要依据包括以下三个方面:首先,发夹结构是miRNA二级结构的基本特性,几乎所有的预测程序均将这一特征作为预测的首要标准;其次,miRNA序列和结构的保守性,这是区分miRNA候选基因和其它不相关发夹结构序列关键因素;最后,发夹结构的动力学稳定性和序列、结构的相似性等。各种预测软件在预测依据上各有侧重。MiRscan软件就是利用预测序列与已知miRNA的相似性来鉴定潜在miRNA,并对保守发夹结构进行分类,预测了多个C.elegans和人的新候选miRNAs,且通过实验得到确认。其次是根据靶标序列的保守性进行预测,靶标的3’ UTRs都存在保守序列,而且这些保守序列能与miRNAs seed序列互补配对。最后,根据二级结构的热力学稳定性进行预测,利用这一特性能区别miRNAs和其它具有发夹结构的序列。miRNAs折叠的自由能比tRNAS和rRNAs低。RNAz软件为一款结合二级结构的热力学稳定性和序列保守性开发的miRNA预测软件。很多miRNAs以多拷贝或基因簇等形式存在于基因组中,因此利用已知miRNAs基因附近的序列来寻找潜在的miRNAs基因也是一个很有效的方法。但是,软件分析法存在一个明显的缺陷:目前对miRNAs的认识还不足以到使用计算机可以精确鉴定miRNA的程度。设置严格的检测标准将降低预测的敏感性。而较宽松的标准则其准确度会下降。其预测仅局限于在表型或序列保守的RNA,不能预测那些不具有保守性的稀有miRNA。

miRNA实验检测与基因操控技术

遗传学策略(genetic method)

遗传学策略包括正向和反向遗传学分析。把突变的基因从产生非正常表型的生物体或者组织当中分离出来进行研究鉴定,这种研究方式为正向遗传学分析方法。第一个小非编码RNA基因lin-4在线虫中发现就是使用的这种方法。在研究时序发育混乱的突变体时,发现这种混乱是由于小非编码RNA基因lin-4发生突变造成。然而miRNA分子序列短小,对不影响seed序列的突变具有“容忍性”,都给使用正向遗传学方法研究miRNA带来困难。反向遗传学分析方法原理是在体外引入特定的突变,然后通过同型基因化或换位将突变基因导入宿主体内原来的位置,观察表型的改变。在研究miRNAs的时候,反向遗传学分析方法常常与生物信息学分析相结合,通过预测miRNA基因,然后引进突变,观察表型。

基因组实验方法鉴定miRNA基因

该方法需要制备小RNA的文库。现今发展了多种克隆小RNAs的实验方法,不同的小RNA克隆方法设计基本原理一致。首先将提取的总RNA通过变性PAGE胶电泳分离回收长度20-25 nt的小RNA,接着分别将5’和3’端接头结合于小RNA两端,RT-PCR扩增小RNA片段,获得cDNA片段后克隆入载体表达,构建cDNA文库,再通过测序分析、同源性比对确定这些小RNA的来源。在合成cDNA的第一条链时,先将3’端接头接于小RNA上,为了避免小RNA和接头的自身连接,连接之前对RNA进行去磷酸化处理,对3’端接头的3’进行化学处理或在3’端接头的5’末端加上一个腺苷酸,采用T4连接酶连接,不加入ATP,这样就可以避免去磷酸化处理小RNA。3’接头连接之后可进行5’接头连接,连接之前最好先对其5’磷酸化处理。部分扩增测序是一种PCR扩增技术,它使用一条部分覆盖miRNAs序列的引物,另一条引物为cDNA克隆的适配体。根据预测的miRNAs设计一段生物素标记的寡聚核苷酸,再用这段核苷酸去捕文库中同源的miRNAs,对被捕获的cDNA进行扩增和测序。大量已知生物的高丰度和组成性表达miRNA基因都是通过这种直接克隆而获得的。然而对于在生物体内浓度很低的miRNA,直接克隆法成效较差。

miRNA表达水平的定量研究

如果某种miRNA在某种特定组织、细胞或者某个发育阶段中特异性表达,说明此miRNA可能在其中发挥某种调控作用;要了解miRNA在机体中时间、空间的表达情况及其在机体生理、病理过程中所发挥的作用,必须有合适的方法检测miRNA的表达水平,在此基础上开展更深入的功能研究。现阶段检测miRNA的表达水平的方法主要包括基于核苷酸杂交和基于PCR的miRNA检测方法。基于探针杂交技术的miRNA检测方法是一种直接检测法,不需要对样本RNA进行预扩增,包括RNA印迹技术、原位杂交技术、微阵列技术和基于微球的流式细胞术等技术。RNA印迹技术是检测RNA的经典方法。基本原理如下:首先在载体(如硅片、微球或膜等)上固定miRNA样本,再与经过标记的探针杂交,洗涤多余的杂交探针后进行信号检测;也可以在载体上先固定与靶miRNA序列互补的DNA探针,然后与经过标记的样本miRNA杂交,再进行信号检测。信号标记的方法包括同位素标记、荧光标记和纳米金标记等。原位杂交技术能够显示miRNA表达的位置,尤其适用于石蜡包埋或福尔马林固定后的标本,LNA特异的构造使其具有更强的杂交特性和敏感性选择性,用于原位检测miRNA是最理想的选择。微阵列技术(microarray)也称生物芯片、特点是高通量,现今广泛应用于功能miRNA的初步筛选。基于微球的流式细胞术(bead-based flow cytometry)是一种液相芯片技术,该方法将流式细胞检测与芯片技术有机地结合起来,兼有通量大、检测速度快、灵敏度高和特异性好等特点。miRNA仅为22nt左右,相当于一个引物的长度,基于PCR基础上的miRNA检测方法需通过接头增加miRNA的长度来使miRNA适于PCR扩增检测,包括有茎环引物逆转录聚合酶链反应(stem-loop RT-PCR)法、RNA加尾和引物延伸RT-PCR法等。基于扩增反应的方法还包括滚换扩增法(RCA),引物浸入法(Invader),测序法等。

(1) Northern杂交

为最经典的检测真核生物RNA大小,估计其丰度的实验方法。待测样本经变性凝胶电泳、转膜、烘干等步骤,使RNA牢固地结合在膜上。将膜与标记好的变性RNA探针杂交、洗膜、显影后对条带进行光密度扫描,根据条带分子大小以及密度确定miRNA表达量。但Northern技术过程烦琐,操作费力,对RNase污染非常敏感,更有难于检出表达量很低的miRNA的缺点。

(2) miRNA表达谱芯片

原理同样是使用标记探针检测固相支持物上的目标分子。通过设计芯片上miRNA基因及内参序列,可精确分析出样品中相应miRNA的表达水平。基因芯片具有高通量的优点,可以一次在同一样本中检测出几百个基因的全部表达。Luminex公司研制的液相芯片(Liquid chip)又称多功能悬浮点阵(Multi analyte suspension array,MASA),是出的新一代生物芯片技术。液相芯片体系由许多小球体为主要基质构成,每种小球体上固定有不同的探针分子,为了区分不同的探针,每一种用于标记探针的球形基质都带有一个独特的色彩编号,将这些小球体悬浮于一个液相体系中,就构成了液相芯片系统。该系统可以对同一个微量样本中的多个不同分子同时进行快速的定性、定量分析,这种检测技术被称为FMAP(Flexible multianalyte profiling)技术。分子杂交在悬浮溶液中进行,检测速度极快。

(3) 核酶保护分析技术(RPA)

miRNA的检测还可以采用核酶保护分析技术,将标记好的探针和待测RNA样本混合,热变性后杂交,未杂交的RNA和多余的探针用单链核酸酶消化,热失活核酸酶后纯化受保护的RNA分子,最后通过变性PAGE电泳分离探针,显色。这种基于液相杂交的新方法简单快速,灵敏度高,但也只能用于分析已知miRNA。

(4) RAKE法

RAKE法(RNA primed array based Klenow emzyme)是在miRNA microarray的基础上利用DNA聚合酶I的Klenow片段,使miRNA与固定的DNA探针杂交的方法。RAKE可以敏感特异地检测miRNA,适用于大量快速的筛选所有己知的miRNA。能够在特定的细胞和肿瘤中检测miRNA表达谱情况。不仅如此,RAKE法还可以从由福尔马林固定了的石蜡包埋的组织中分离出miRNA并对其进行分析,为从存档标本中分析miRNA开启了希望之门。

(5) 原位杂交(in situ hybridization)

原位杂交技术可直观了解miRNA表达方式,是观测miRNA时空表达的一种较简便的方法,常标记方式包括地高辛、生物素、荧光标记等。锁定核酸基础上的原位杂交(Locked Nucleic Acid (LNA) based in situ hybridization (LNA-ISH))是当前应用较多的探针方式。

(6) 实时荧光定量PCR技术(Real-time PCR,RT-PCR)

荧光检测PCR仪可对整个PCR过程中扩增序列的累积速率绘制动态变化曲线。在反应混合体系中靶序列的起始浓度越大,要求获得扩增产物某特定产量的PCR循环数(一般用特定阈值循环数Ct来表达)越少。由于miRNA长度仅为22 nt,传统的qRT-PCR不适合扩增如此短的片段。现今有几种用于miRNA的实时定量PCR方法,只简要介绍一下颈环法。颈环法是一种理想的miRNA检测qRT-PCR方法:首先设计特殊的茎环结构引物,以待测miRNA为模板逆转录合成cDNA第一链,该cDNA一端为茎环状引物,茎环状结构被打开便增加了cDNA的长度,随后以合成的cDNA为模板设计引物进行实时定量PCR扩增。qRT-PCR具有特异性高、灵敏度好、快速简单等多种优点。

(7) 基于padlock探针和滚环扩增的miRNA检测系统

Padlock探针是线性的DNA探针,其末端序列分别可以和miRNA的两端互补杂交。在合适的条件下,当其与RNA模板匹配时,当padlock探针与靶miRNA杂交时, DNA连接酶将padlock探针的 3’和5’末端连接成环,其中miRNA模板随后用作滚环扩增的引物, 从而实现了对目标序列的线性扩增。padlock探针技术不需要特殊的设备,可以对纳克级总RNA中的miRNA进行检测和量化。

(8) 克隆测序法

大部分已知的miRNA都是通过cDNA克隆测序发现和鉴定的。该法需要先构建miRNA的cDNA文库,再进行PCR扩增,扩增产物随后克隆到表达载体上测序。Takada开发了一种改进的扩增克隆法(miRNA amplification profiling,mRAP),mRAP法先在miRNA的3’端连上接头,然后用与接头互补的反转录引物反转录。因为特定的反转录酶具有末端脱氧核苷酸转移酶活性,一些核苷酸(主要是脱氧胞苷酸)会连接到反转录出的cDNA链的3’末端。当5’端接头与cDNA链的poly(C)粘性末端退火后,加入一对共用引物即可实现对cDNA的PCR扩增。由于mRAP高度灵敏,可以直接用克隆和测序技术检测少量组织中miRNA的表达量。标签序列克隆法是一种在在基因表达系列分析(SAGE)技术的基础上发展了检测效率更高的miRAGE (miRNA SAGE)克隆法,该法通过生成大的串联子,通过单个测序反应可检测多个miRNA,明显提高了检测效率。新一代大规模测序技术包括焦磷酸测序技术、Solexa合成测序技术和SOLID连接测序技术等,能在一次测序过程中对几百万个样本进行同时测序,极大提高了测序效率。这类大规模测序技术极大的提高了多个物种遗传信息的解读速度,为获取所有miRNA的序列信息,解密miRNA图谱提供了保证。

miRNAs靶标的预测和鉴定

绝大多数的miRNAs通过碱基配对的方式结合到靶mRNA的3’ UTR,通过抑制靶基因的翻译达到调控基因表达的目的,因此miRNA靶标的鉴定对研究miRNA的功能至关重要。新miRNA发现的速度相对其功能研究要快的多。到目前为止,已经有15172条miRNA被收录,但是其功能研究进展相对缓慢。阻碍miRNA功能研究进展的主要原因是:miRNAs与其靶基因并非完全匹配,这给筛选miRNA靶基因带来难度;而当前缺乏高通量的实验技术是阻碍miRNA靶标鉴定进程的主要因素。miRNA与其靶基因间存在如下重要特征:靶基因3’UTR区具有与miRNA 5’端至少7个连续核苷酸的完全配对区域(2-8 nt),miRNA的该部分序列称为“种子”序列;mRNA与miRNA种子序列互补的区域在物种中经常具有保守性。研究人员根据对miRNA及其靶mRNA特征的认识,开发了相应的计算机软件推断miRNA的靶基因。但多种因素影响了靶标预测的效率。

miRNA靶标预测高效性影响因素

最初的几个miRNAs(如let-7和lin-4)的靶标鉴定出来后,研究人员意识到miRNA与靶标转录本的3’ UTRs互补配对,认为可以根据靶标和miRNA互补配对这一特点设计计算机程序进行靶标筛选。但是实践操作过程中,只依据靶标和miRNA互补配对这一原则远远不够,筛选的效率还受以下几个方面因素的制约:第一,植物的miRNA与靶标基因几乎完全配对结合,靶标基因的鉴定相对容易,但在动物中,miRNA与靶基因mRNA以不完全碱基互补配对结合于3’ UTRs,给通过序列相似性来鉴定动物体内的miRNA结合位点带来了相当的困难。第二,miRNAs是序列短小的小分子,与3’ UTRs结合的方式存在多样性,结合位点除了配对区还存在突环和错配区,一般的分析工具只对配对区较长,突环和错配区很少的靶标鉴定相对效率较高。第三,miRNAs存在2-7nt(seed区)与靶标精确的配对,如果忽略GC含量进行大规模seed区与已有物种的全基因组序列配对,在基因组中六个碱基随机出现的几率相对较高,预测出的靶标假阳性现象严重。第四,尽管现在很多生物的全基因组序列测序工作已经完成,但是对3’ UTRs碱基序列、座位、剪接多态性认识尚浅,这也给miRNA靶基因的预测带来困难。第五,在进化过程中物种间的3’ UTR序列相当保守,虽然靶标预测过程中排除那些不具有保守序列的靶标能降低假阳性概率,但3’ UTR序列保守性也不是绝对的,排除所有不保守序列降低了预测的灵敏度。

miRNA预测原则和软件介绍

通过实验方法确定miRNAs的作用靶标非常耗时,尚无高通量的靶标鉴定方法。因此,虽然靶基因鉴定存在上述多种困难,通过理论方法预测miRNAs的作用靶标依旧是当前筛选和识别miRNAs靶标的较为理想的途径。一般情况下,用于miRNA靶基因预测的软件遵循如下几个原理:1 序列互补性:位于miRNA 5’端所谓种子序列(第2-7nt)与靶基因3’UTR可形成Watson-Crick配对是所有miRNA靶基因预测的最重要因素。配对包括如下几种形式:多数情况下为7nt匹配:第2-7nt与靶基因呈互补配对,外加在靶基因对应miRNA第一位核苷酸处为A(7mer-1A site),或是miRNA第2-8nt与靶基因完全配对(7mer-m8 site);而对于miRNA第2-8nt与靶基因完全配对,且外加靶基因对应miRNA第一位核苷酸处为A(8mer site)这种类型,其特异性更高;对于仅miRNA第2-7核苷酸与靶基因完全配对(6mer site)这种方式,其用于搜索靶基因的敏感性更高,特异性相应下降。另外,还有种子序列外的3’ supplementary site和3’ complementary site两种形式。2 序列保守性及其它因素:除了序列互补性外,靶基因预测较关注的还包括序列保守性、热动力学因素、位点的可结合性(accessibility)和UTR碱基分布等多个因素。序列保守性:miRNA结合位点在多个物种之间如果具有保守性,则该位点更可能为miRNA的靶位点。热动力学因素:miRNA:target对形成的自由能,自由能越低,其可能性越大。位点的可结合性(accessibility):mRNA的二级结构影响与miRNA的结合形成双链结构的能力。UTR碱基分布:miRNA结合位点在UTR区的位置和相应位置的碱基分布同样影响miRNA与靶基因位点的结合和RISC的效率。另外,诸如miRNA的分布与靶基因组织分布的相关性也是在做靶基因预测时要考虑的重要因素。用于miRNA靶基因预测的软件种类很多,包括miRanda, EMBL, PicTar, TargetScan(S), DIANA-microT 3.0, PITA, ElMMo, rna22, GenMiR++, TarBase, miRBase, miRGen-Targets等。虽然现有的几种预测程序在技术细节上有所不同,但它们预测的基本原理相似,都是基于miRNAs与靶标的结合机制。2003年,Stark和同事通过程序对黑腹果蝇全基因组搜寻鉴定潜在的miRNA靶标首先得到成功。因为黑腹果蝇全基因组序列提供了丰富而且精确的3 ’UTRs的信息。把果蝇的3’ UTRs与拟南芥、果蝇和冈比亚按蚊的3’ UTRs比对找出保守3’ UTRs的序列组成一个保守的3’ UTRs数据库,然后用HMMer比对搜寻工具搜寻该数据库与已知miRNA第2-8个核苷酸完全互补配对的3’ UTRs序列,再用mfold软件判断miRNA靶标复合体的热力学稳定性。此方法预测出果蝇许多未知的靶标,其中有6个靶标得到实验验证。Enright等建立的miRanda法是第二个公布的miRNAs靶标预测法。其编程原理依据主要是:通过得分矩阵计算出互补程度大小,寻找互补性最高的3’ UTRs;利用vien-naRNA计算miRNAs和靶标复合体热力学稳定性,并淘汰不能形成双连体的假阳性靶标。TargetScan为了在预测的开始过程排除假阳性,首先要求seed严格配对,延伸序列直到不配对的区域,然后根据保守性原则,淘汰不具有3’ UTRs保守序列的分子,最后运用RNAFold进行热力学稳定性筛选。根据miRNA-靶标复合体热力学稳定性这一特性建立的预测法有PicTar、RNAHybrid等。

miRNAs功能研究方法

通过程序预测得到的miRNAs靶标常需通过生物学方法进行鉴定;miRNA的功能也开展详细科学的实验研究。常用的方法包括:报告基因构建,突变研究,基因沉默技术以及经典的遗传学技术。研究miRNA对靶基因的作用与一般的基因研究方法相同,上调细胞中miRNA表达水平获得gain-of-functon表型,而下调或抑制miRNA的表达获得loss-of-function表型。通过改变特定miRNA表达水平可用于鉴定受该miRNA调节的基因以及该miRNA所影响和调控的细胞反应。上调miRNA主要依靠将化学合成的miRNA导入细胞,或构建pre-miRNA表达载体转染细胞,在细胞内表达pre-miRNA并通过细胞中各种酶以及蛋白作用产生miRNA。下调则以阻断miRNA表达为主。miRNA的活性可以通过对与内源性miRNAs互补的锁核酸(locked nucleic acid, LNA)寡核酸,Morpholino(morpholino phosphorodiamidate antisense oligonucleotides)探针或2’-O-甲基RNA寡核酸等技术实现。也可以通过空间位阻寡核酸在多点实现对miRNA的成熟抑制;另外,利用完全互补的antagomir可以实现对特定miRNA的沉默;Thermo旗下Dharmacon产品研发团队人工合成的miRNA模拟物和阻遏物可转染增强或者抑制内源的成熟miRNA,也是研究miRNA功能的重要的工具。

miRNA转基因动物

转基因技术(transgeneic technology)通过将外源DNA导入动物受精卵或胚胎干细胞内,以随机插入或同源重组的方式整合到受体染色体中,并随细胞分裂而遗传给后代。“转基因动物”对研究特定基因的功能具有重要的作用。从“转基因”表达水平上看,转基因可分为:过表达(over expression)、基因敲除(knockout,KO)及基因敲减(knockdown)等类型。因转基因导致基因表达水平明显差异,从而导致动物呈现不同表型(phenotype),为功能实验提供重要的研究材料。以往转基因技术通过导入外源DNA片段编码酶、受体等功能蛋白质来研究相应分子的功能,随着对miRNA的研究深入,已将转基因技术普遍应用到小RNA研究中。2002年起有实验室尝试导入编码短链RNA的DNA片段,在动物体内达到RNA干扰(RNAi)使基因沉默的目的。前几年已出现miRNA转基因动物,随着时间推进,miRNA转基因动物模型正成为miRNA功能研究的有力工具,相关研究论文数量不断增长,同时miRNA转基因动物构建策略也不断丰富和翻新。

miRNA编码产物不涉及蛋白质的翻译过程,在构建转基因构件时不必考虑翻译起始位点和开放阅读框等信息。典型的miRNA转基因构件包括:启动子、Pre-miRNA、Pre-miRNA侧翼序列及转录终止信号等。有些miRNA在基因组中成簇分布,各个miRNA方向相同或相反,在研究这个miRNA功能时可将整簇视为整体一起构建。如Lu等研究转基因小鼠模型中,将miR-17-92簇(编码包括miR-18,miR-19a,和mi-20a等7个miRNA)上下游的侧翼序列整体构建入小鼠,结果表明该簇在转基因动物体内能够有效表达。对于具有组织特异性的miRNA,可选择组织特异性的启动子(tissue specific promoter)构建转基因动物。

miRNA的表达具有时序和组织特异性,传统基因打靶过程中,miRNA从发育的开始就在其全部脏器内被“敲除”,这会影响胚胎发育,甚至造成胎死(embryonic lethality)。条件基因敲除(conditional gene targeting)很好的解决了这一问题,该技术需要一种含组织特异性表达Cre重组酶的转基因动物,同时经同源重组建立另一种含LoxP重组酶位点的基因打靶动物,二者杂交产生的后代,就可产生组织特异的miRNA敲除动物。目前,重组酶Cre-LoxP系统已在miRNA基因敲除动物中应用。目前,国际上已成立了小鼠基因敲除联盟,方便研究人员间加强信息交流、实现数据共享。

除了针对特定miRNA直接进行过表达或敲除操作这类传统转基因技术,根据miRNA的分子特点、成熟过程及作用机理,另有多种其它转基因策略。如miRNA加工酶RNaseIII (Dicer/Drosha)敲除:Dicer酶敲除使体内所有miRNA不能加工成熟,导致成熟miRNA缺失,直接导致早期胚胎发育异常致死;通过过表达miRNA靶序列(target sequences),对miRNA起到间接基因敲减作用;基于四环素诱导的调控载体用于可逆性条件miRNA敲除等。microRNA调控的生物网络

复杂的生物学过程需要成千上万种大分子通过精确的相互作用和调控来完成,各种分子之间的相互作用可以用网络的形式来表示。例如当前存在的基因调控网络描述了转录因子及其控制的基因之间的关系。网络的拓扑结构由度(degree,指与一个节点连接的边数)、节点间距离(distance)、网络直径(diameter)、聚类系数(clustering coefficient,指与节点连接的所有邻节点间的实际连接数与它们之间所有可能的连接数之比)、模体(motif,为了完成特别的功能相互联系的分子)和模块(module,多个模体组成以完成特定的功能的单元)等描述。

在某种生理进程和病理条件下,常为多种miRNA共同发生改变,在其中miRNA可能通过相互协同发挥网络调控作用。miRNA对基因的转录后水平与转录因子对基因转录水平的调控关系,使有限的转录因子和miRNA通过无数的组合构成了调控的多样性,更利于满足基因精确表达需求。

一个调控因子可以同时调控来源于内含子的miRNA和其靶基因的表达,转录的miRNA抑制其靶蛋白表达。根据这种模型可以推断出两种miRNA调控的模体。II型miRNA前馈回路:上游的调控因子激活miRNA的转录并且抑制RNA靶基因的转录,而miRNA又对其靶基因起抑制作用,即miRNA对其靶基因的调控与转录调控一致。I型miRNA前馈回路:上游的因子激活miRNA的同时也激活其靶基因的表达,反过来miRNA抑制其靶基因的翻译。实验证实的一个I型miRNA前馈回路的例子是miR-17-5p抑制E2F1,而两者在人类细胞中都被c-Myc转录激活。另外,还发现有其它两类miRNA调控的网络模体:混合调控回路和间接前馈回路。在前者中,一个miRNA抑制一个转录因子和一个靶基因;而转录因子激活miRNA和靶基因。在后者中,转录因子TFl激活转录因子TF2和一个靶基因G,反过来,TF2激活一个miRNA,而这个miRNA又抑制靶基因G。miRNA及其调控基因的信息正在累积增长中,尤其是通过细胞转染miRNA,利用蛋白质组学方法研究细胞蛋白的改变,为构建miRNA与蛋白作用网络提供了大量的有益素材,但当前miRNA间大规模协同及其与转录因子的协同作用依旧缺乏详实的实验数据。随着研究深入,整合分析miRNA表达谱、靶蛋白表达数据和转录因子调节基因表达等数据,对理解协同调控作用,加深生物体分子调控规律认识将具有重要意义。

miRNA的细胞功能及意义

miRNA在植物和动物中广泛存在,通过miRNA数据库(miRBase,http://www.mirbase.org/)可实时查询植物、动物和病毒的miRNA序列的收录情况。miRNAs的广泛性和多样性提示其可能有非常广泛多样的生物功能。miRNA是高等植物、动物生长发育的重要调节因子,miRNAs在胚胎干细胞和多种成体干细胞发育、胚胎后期发育、细胞分化、增殖和凋亡、代谢、器官发生及内分泌、免疫系统调控等过程中发挥着重要作用。miRNA失调节与疾病关系密切,MiR2Disease收录了已知的miRNA失调节和人类疾病关系的相应文献。一些与疾病有关的蛋白质编码基因的转录因子(transcription factors,TFs),如c-Myb、NF-Y、Sp-1、MTF-1和AP-2alpha等,是miRNA异常表达的主要调节因子(master-regulators)。尽管当前对miRNA的研究还处于初级阶段,推测在高级真核生物体内miRNAs对基因表达的调控作用可能和转录因子同等重要,miRNAs可能代表在一个新层次上的基因表达调控方式。

miRNA与发育和细胞分化

首先被确认的miRNA lin-4和let-7可以通过调节一组关键mRNAs的翻译调控线虫发育进程。Bantam miRNA是第一个被发现有原癌基因作用的miRNA。一些miRNAs参与了在细胞分化和组织发育过程中起重要作用基因的转录后调控,例如mir-14、mir-23等。有些miRNA为干细胞特有,推测是维持细胞全能性所必需,并参与细胞分化过程。一些呈组织特异性表达miRN与维持分化细胞的功能关系密切。miRNAs在组织和器官的生长和分化过程中,也扮演着极为重要的平衡角色。例如miR-1家族包括miR-1-1和miR-1-2,在心肌、骨骼肌中特异表达,心脏形成的关键调节因子Hand2 mRNA是miR-1的靶标基因,miR-1能适时关闭Hand2蛋白,促使心脏正常发育。

miRNA与细胞增殖和调亡

果蝇bantam是第一个被鉴定的与细胞凋亡和增殖相关的miRNA。bantam的靶基因hid被证实是一种调亡诱导基因,bantam与hid mRNA的3’ UTR互补结合,阻止hid mRNA的翻译,抑制蛋白的表达,最终表现为促进细胞增殖的作用。相反,如果敲除bantam上调hid的表达水平,诱导调亡,抑制细胞增殖。miR-14也是一种调亡抑制miRNA,它通过调节调亡效应因子半胱天冬酶Drice而参与细胞调亡和脂肪代谢。在B-CLLs细胞中miR-15a和miR-16-1直接与BCL2的3’ UTR序列相互作用调控BCL2蛋白的表达,并与之成负相关,而BCL2是作为抗凋亡基因参与细胞凋亡过程的,这里miR-15a和miR-16-1发挥了类似抑癌基因的作用。

miRNA与疾病

miRNA参与了包括调节心脏生成关键因子,心肌肥大,心电传导等病理过程;组织特异性miRNAs,如miR-375,参与了胰岛素分泌的出胞过程,为一些代谢性疾病(如糖尿病)的治疗提供了新的作用靶点。miRNA可以调节神经系统,神经元miRNA参与突触发育的多个阶段,包括树突发生(miR-132, miR-134和miR-124),突触形成和突触成熟(miR-134和miR-138)等过程,一些研究还发现miRNA在精神分裂症患者表达发生改变,可能参与了精神疾病的病理过程。

miRNA与恶性肿瘤

近几年,不断有肿瘤发生与miRNAs的表达有关的例子的报道,使miRNAs与人类肿瘤的关系引起了人们的广泛注意。miRNA的表达水平在许多肿瘤中发生改变,起着原癌基因和抑癌基因的作用,miRNA表达水平的变化,也导致瘤基因或抑癌基因转录后的异常调控。若miRNA的靶基因是癌基因,此miRNA的表达低于正常水平,意味着它对癌基因的抑制作用减小,引起癌基因编码的蛋白增加;反之,若miRNA的靶基因是抑癌基因,此miRNA的表达高于正常水平,则意味着它对抑癌基因的抑制作用增加,引起抑癌基因编码的蛋白减少。多想研究发现miRNA与c-Myc,E2F1和P53等与肿瘤密切相关的蛋白相互作用,显示miRNA在肿瘤发生、发展中发挥着关键作用。另外,通过分析miRNA表达情况的能够区分部分肿瘤的类型,该研究具有重要的潜在应用价值:有利于鉴定肿瘤的起源组织类型,可指导医生开展治疗。miRNA谱现在已经能用于确定患者慢性淋巴瘤的恶性程度。现今,过表达和缺失表达特定miRNA的转基因小鼠正广泛用于研究相应miRNA在多种恶性肿瘤中的作用。一项利用miRNA表达谱检测早期结肠癌的研究工作当前已处于临床试验中。初步研究结果发现性别和年龄都与患者相匹配的健康志愿者与处于早期结肠癌(II期)患者血浆样miRNA谱间存在显著的差别,使用1毫升血液就可以将两者区分开来,且特异性很高,该检测方式具有高效,相对无创伤等优点,可用于筛选高危人群,进一步开展结肠病理检查。

Calin等发现超过一半的miRNA位于脆性位点、杂合型丢失区(minimal regions of loss of heterozygosity)、微小扩增区(minimal regions of amplication, minimal amplicons)或断裂点区(common breakpoint region),暗示miRNA在肿瘤发生过程中起着至关重要的作用。越来越多的研究表明,miRNA参与了包括神经母细胞瘤、垂体腺瘤、甲状腺癌、乳腺癌、肺癌、肝癌、胰腺癌、结肠直肠癌、宫颈癌及白血病等在内的多种肿瘤的发生、发展过程,因不同肿瘤类型及其阶段不同,miRNA表达谱呈现不同的特征,其在肿瘤诊断及治疗方面具有潜在应用价值。早期诊断和早期治疗是决定肿瘤患者治愈率及预后的一个关键因素,现阶段临床最常用的检查方法包括组织病理学、影像学及血清标志物检验等,但这些方法往往只能在肿瘤发展到一定的程度后才能检测出来。有报道miRNA可能成为肿瘤早期诊断的新型生物标志物。Yanaihara等用基因芯片技术分析了肺癌的miRNA表达谱,发现在104种肺癌miRNA中有43种与相应的正常组织有显著差异,其中8个miRNA和肺癌患者的预后密切相关,如高表达miR-155和低表达let-7a等提示预后较差。不同肿瘤具有不同的miRNA表达模式,通过miRNA表达谱甚至还可以进行肿瘤的组织学类型、开展肿瘤分期及预后估计。Iorio和Michael等发现,miR-143,miR-145在结、直肠癌、乳腺癌、前列腺癌、宫颈癌和淋巴瘤中表达下调。He等研究发现miR-221,miR-222,miR-146在乳头状甲状腺癌中显著上调。Ciafre SA和Chan等发现在恶性胶质瘤和乳腺癌中表达上调。Johnson SM等发现肺癌let-7表达常降低,let-7的靶点是Ras癌基因,RAS过表达促进肿瘤生长。而细胞中miR-155水平的升高有助于诊断淋巴瘤等癌症。近来人们研究发现血液循环中存在miRNA,且血清miRNA类型可以作为一些病理状况的生物标志物。肿瘤miRNA在血液中的存在可能是肿瘤死亡和溶解、或者由肿瘤细胞释放出miRNA到其周围微环境的结果。因而血液中miRNA可作为未来检测的一种新手段。

部分miRNA的高表达在部分肿瘤的病理过程中发挥重要作用。利用反义寡核苷酸转染癌细胞,通过碱基互补原则与目标靶RNA特异性互补结合,使过量表达的miRNA得到抑制,可能达到减缓肿瘤生长速度的功效。静脉注射与miR-16、miR-122、miR-192和miR-194互补的反义寡聚核苷酸后,可在多个器官观察到相应miRNA的大量减少。小鼠心衰模型上,miR-21在心脏成纤维细胞中表达上调,当利用一反义寡核苷酸沉默miR-21时,可使在一定程度上扭转组织损伤,防止心脏衰竭,说明miRNA具有广泛的治疗潜力。此外,恢复癌细胞中表达下调的miRNA可能是另一个安全有效的肿瘤治疗途径。

miRNAs与肝脏疾病

肝脏miRNAs表达异常或功能失调与病毒复制、肝细胞增殖和分化、肝脏脂肪变性、肝细胞癌发生等病理生理过程密切相关。(1) miRNAs与病毒性肝炎:早期研究证实miRNAs通过影响病毒复制、宿主免疫应答和抗原呈递,参与多种病毒感染性疾病的发生。宿主细胞miRNAs通过造成病毒mRNA基因沉默灭活病毒。Jopling等的研究发现,肝组织特异性miR-122与病毒感染、复制相关。Shan等通过转染antagomir造成miR-122沉默后,发现HCV RNA减少64%。miRNAs和抗miRNAs寡核苷酸(anti-miRNA oligonuoleotides,AMO)是理想的抗病毒手段,近年来发展的锁核酸(1ocked nuclei acids,LNA)等骨架修饰技术能克服miRNAs和AMO在生物系统内不稳定和易被降解的缺陷。干扰素抑制HCV复制部分就是通过诱导产生miRNAs发挥的。(2) miRNAs与脂肪性肝病:脂肪性肝病是遗传-环境代谢应激性疾病,脂质代谢紊乱是发病的中心环节之一。miRNAs在调节PPAR gamma表达,前体脂肪细胞向成熟脂肪细胞的分化中发挥重要作用。高脂喂养肥胖小鼠的肠系膜脂肪细胞高表达miR-143,且其水平与脂肪细胞分化相关标记物PPAR、脂肪细胞型脂肪酸结合蛋白(adipocyte fatty acid-binding protein,aP2)、血浆瘦素等密切相关。(3) miR-122是调节胆固醇和脂肪酸代谢的关键因子之一,可调控多种基因的表达。以ASO抑制miR-122能增加肝脏脂肪酸氧化、降低脂肪酸合成,降低血浆胆固醇水平。最近又发现miRNA-33与机体胆固醇的转运和代谢关系密切。胰岛素抵抗和高胰岛素血症是非酒精性脂肪性肝病的重要病理生理机制,miR-375可通过靶基因重组胰岛素样生长因子I特异调节哺乳动物的胰岛细胞发育和胰岛素分泌,其过表达可抑制葡萄糖诱导的胰岛素分泌,表达受抑则可促进胰岛素分泌从而改善胰岛素抵抗。目前关于miRNAs调节动物脂肪细胞分化和脂类代谢的具体机制还远没有未明了。(4) miRNAs与肝纤维化:肝星状细胞(hepatic stellate cells,HSCs)活化是肝纤维化发生的中心环节。利用miRNAs检测静止期与活化期HSC miRNA表达情况发现21种miRNAs差异表达,miRNAs调控HSCs凋亡抗性相关基因的表达,影响肝纤维化进程。(5) miRNAs与肝细胞癌: Gramantieri等比较了肝硬化与肝细胞癌的miRNAs表达谱,发现35种差异表达miRNAs。差异表达的miRNAs可用来区分肝硬化和肝细胞癌,某些miRNAs具有用于肝癌诊断、分期、进展及预后估计的潜力。

总之miRNA通过转录后调节影响着机体的众多生理和病理进程,随着对miRNA与疾病关系研究的深入及检测方法的标准化,miRNA相关检测和针对miRNA的治疗方式(如转基因或化学药物)将成为疾病诊断和治疗的新手段。

MiRNA与非编码RNAs

miRNA是长21-25 nt的非编码RNA,5’有一磷酸基团,3’为羟基。成熟miRNA来自pre-miRNA U形端的一枝,被两个RNaseIII逐步地从pri-miRNA上释放出来。动物miRNA作为转录抑制因子,通过并不完全的匹配,识别、结合靶基因的3’UTR实现转录抑制。lin-4和let-7通过部分互补结合到目的mRNA靶的3’ UTRs诱发蛋白质翻译抑制,这种结合并不诱导mRNA靶的降解。但是其它一些miRNAs可能以类似siRNA的方式介导目的RNA的降解。实验表明引入和let-7目的mRNA靶完全互补的miRNA会诱导mRNA靶的降解。还有实验结果表明一些miRNA,包括在植物中发现的Scarecrow miRNA,能结合完全互补的mRNA链从而降解mRNA序列,抑制蛋白合成。

RNAi即RNA干扰,是一种进化保守性机制,是机体抵抗病毒入侵的一种天然保护作用。当病毒入侵,转座子(TE)转录或基因组中反向重复序列转录时,细胞中的RNA可以通过两个RNA互补链结合成分子间双链RNA,也可以通过单个RNA链自身回折互补形成分子内双链RNA。这种双链的dsRNA在Dicer酶、ATP和解旋酶共同作用下产生大约21-23nt的siRNA (small interfering RNAs);siRNA又与RISC相互作用导致siRNA双链的解离并与靶标mRNA互补结合;siRNA与它的靶标mRNA互补,从而导致mRNA在这些互补位点直接断裂;通过人为设计这种dsRNA或者siRNA可实现对靶基因的降解。这些合成的沉默试剂作为一种新的生物学工具,极大的促进了新基因鉴定、基因功能分析和信号通路的研究。

总之,siRNAs和miRNA在分子特征、和作用机理上很相似。(1) 二者的长度都约在22 nt左右。(2) 二者都依赖Dicer酶加工,具有Dicer产物的特点: 5’端磷酸,3’端均有2个游离核苷酸。(3) miRNA和siRNA合成都由双链的RNA或RNA前体形成。(4) 二者都是RISC (RNA induced silencing complex)组分,都具有组成RISC复合体的Argonaute蛋白家族,二者在介导沉默机制上有重叠。miRNA和siRNA区别包括:(1) 根本区别是miRNA是内源的,在基因组中有固定的基因座位;siRNA可以是人工体外合成的,也可以是基因组的转录片断,降解片断和转座片断,病毒基因组转录片断等,但siRNA没有固定的基因座位,加工位点不是保守的。(2) miRNA作用于固定的靶基因,有特定的作用位点,一般在靶基因3’UTR区,而siRNA由于是随机产生的或者人工设计的,可作用于mRNA的任何部位。在作用方式上,没有本质区别,是否降解或翻译抑制取决于互补程度,siRNA也可抑制靶标基因的翻译。(3) miRNA的生理功能在于调控发育分化和调亡,适时调节内源基因表达,而siRNA抑制转座子活性和病毒感染,是生物抵抗外来核酸片断入侵的一种方式。

参考文献

Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005). "Clustering and conservation patterns of human microRNAs". Nucleic Acids Res. 33 (8): 2697-706.

Ana Eulalio, Isabelle Behm-Ansmant, Daniel Schweizer, Elisa Izaurralde. P-Body Formation Is a Consequence, Not the Cause, of RNA-Mediated Gene Silencing. Molecular and Cellular Biology, 2007, 27:3970-3981.

Ambros V . A uniform system for microRNA annotation. RNA, 2003, 9(3): 277-279.

Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003). "A uniform system for microRNA annotation". RNA 9 (3): 277-9.

Ambros V, Lee RC. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol, 2004, 265: 131-158.

Ana Eulalio, Isabelle Behm-Ansmant, Daniel Schweizer, Elisa Izaurralde. P-Body Formation Is a Consequence, Not the Cause, of RNA-Mediated Gene Silencing. Molecular and Cellular Biology, 2007, 27:3970-3981.

Bartel, DP (2009). "MicroRNAs: target recognition and regulatory functions". Cell 136 (2): 215-33.

Bartel DP (2004). "MicroRNAs: genomics, biogenesis, mechanism, and function". Cell 116 (2): 281-97.

Baskerville S, Bartel DP (2005). "Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes". RNA 11 (3): 241-7.

Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). "Identification of hundreds of conserved and nonconserved human microRNAs". Nat. Genet. 37 (7): 766-70.

Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (2004). "Global identification of human transcribed sequences with genome tiling arrays". Science 306 (5705): 2242-6.

Berezikov, E.; Chung, W.; Willis, J.; Cuppen, E.; Lai, E. (2007). "Mammalian mirtron genes". Molecular cell 28 (2): 328-336.

Beuvink I, Kolb FA, Budach W, Garnier A, Lange J, Natt F, Dengler U, Hall J, Filipowicz W, Weiler J. A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res, 2007, 35(7): e52.

Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (2009). "Schizophrenia is associated with an increase in cortical microRNA biogenesis". Mol. Psychiatry.

Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003). "bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila". Cell 113 (1): 25-36.

Bruchova H, Merkerova M, Prchal JT. Aberrant expression of microRNA in polycythemia vera. Haematologica, 2008, 93(7): 1009-1016.

Caifu, Chen; Dana A. Ridzon, Adam J. Broomer, Zhaohui Zhou, Danny H. Lee, Julie T. Nguyen, Maura Barbisin, Nan Lan Xu, Vikram R. Mahuvakar, Mark R. Andersen, Kai Qin Lao, Kenneth J. Livak and Karl J. Guegler (2005). "Real-time quantification of microRNAs by stem-loop RT-PCR". Nucleic Acids Research 33 (20): e179.

Carè A, Catalucci D, Felicetti F, et al. (2007). "MicroRNA-133 controls cardiac hypertrophy". Nat. Med. 13 (5): 613-8.

Cai X, Hagedorn CH, Cullen BR (2004). "Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs". RNA 10 (12): 1957-66.

Caravas, J.; Friedrich, M. (2010). "Of mites and millipedes: Recent progress in resolving the base of the arthropod tree". BioEssays 32 (6): 488.

Castoldi M, Benes V, Hentze MW, Muckenthaler MU. miChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods, 2007, 43(2): 146-152.

Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU. miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc, 2008, 3(2): 321-329.

Chatterjee S, Großhans H (2009). "Active turnover modulates mature microRNA activity in Caenorhabditis elegans". Nature 461 (7263): 546-459.

Chen CZ, Li L, Lodish HF, Bartel DP (2004). "MicroRNAs modulate hematopoietic lineage differentiation". Science 303 (5654): 83-6.

Chen JF, Murchison EP, Tang R, et al. (2008). "Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure". Proc. Natl. Acad. Sci. U.S.A. 105 (6): 2111-6.

Chen PY, Manninga H, Slanchev K, Chien M, Russo JJ, Ju J, Sheridan R, John B, Marks  DS, Gaidatzis D, Sander C, Zavolan M, Tuschl T. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev, 2005, 19(11): 1288-1293.

Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Zen K, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008, 18(10): 997-1006.

Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer, 2007, 6: 60.

Cock, J. M.; Sterck, L.; Rouzé, P.; Scornet, D.; Allen, A. E.; Amoutzias, G.; Anthouard, V.; Artiguenave, F. O. et al. (2010). "The Ectocarpus genome and the independent evolution of multicellularity in brown algae". Nature 465 (7298): 617-621.

Choi, WY; Giraldez AJ, Schier AF (2007). "Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430." (Pubmed). Science. 318 (5848): 271-4.

Cuellar TL, McManus MT (December 2005). "MicroRNAs and endocrine biology". J. Endocrinol. 187 (3): 327-32.

Cui JW, Li YJ, Sarkar A, Brown J, Tan YH, Premyslova M, Michaud C, Iscove N, Wang GJ, Ben-David Y. "Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation.". Blood 110 (7): 2631-40.

Dimond, Patricia F. (2010). "miRNAs' Therapeutic Potential". Genetic Engineering & Biotechnology News 30 (6): p.1. Archived from the original on 10 July 2010. http://www.webcitation.org/5r7L7BfnG. Retrieved 10 July 2010

Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2009). "Deadenylation is a widespread effect of miRNA regulation". RNA 15 (1): 21-32.

Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. 2003. MicroRNA targets in Drosophila. Genome Biol. 5(1): R1.

Fang S, Lee HJ, Wark AW, Corn RM. Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc, 2006, 128(43): 14044-14046.

Faller, M.; Guo, F. (2008). "MicroRNA biogenesis: there's more than one way to skin a cat.". Biochimica et Biophysica Acta 1779 (11): 663-667.

Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 2005, 310(5755): 1817-1821.

Fasanaro, P.; Greco, S.; Ivan, M.; Capogrossi, M.; Martelli, F. (2010). "MicroRNA: emerging therapeutic targets in acute ischemic diseases". Pharmacology & therapeutics 125 (1): 92-104.

Feng J, Sun G, Yan J, Noltner K, Li W, Buzin CH, Longmate J, Heston LL, Rossi J, Sommer SS (2009). "Evidence for X-chromosomal schizophrenia associated with microRNA alterations". PLoS ONE 4 (7): e6121.

Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG (2007). "Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate". Nat. Genet. 39 (2): 259-63.

Friedman RC, Farh KK, Burge CB, Bartel DP (2009). "Most mammalian mRNAs are conserved targets of microRNAs". Genome Res. 19 (1): 92-105.

Gennarino VA, Sardiello M, Avellino R, Meola N, Maselli V, Anand S, Cutillo L, Ballabio A, Banfi S. 2009.MicroRNA target prediction by expression analysis of host genes. Genome Res. 19(3): 481-90.

Gregory, R.; Chendrimada, T.; Shiekhattar, R. (2006). "MicroRNA biogenesis: isolation and characterization of the microprocessor complex". Methods in molecular biology (Clifton, N.J.) 342: 33-47.

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006). "miRBase: microRNA sequences, targets and gene nomenclature". Nucleic Acids Res. 34 (Database issue): D140-4.

Grundhoff A, Sullivan CS, Ganem D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma- herpesviruses. RNA, 2006, 12(5): 733-750.

Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (2005). "The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb". Proc. Natl. Acad. Sci. U.S.A. 102 (31): 10898-903.

Hawkins PG, Morris KV (2008). "RNA and transcriptional modulation of gene expression". Cell Cycle 7 (5): 602-7.

Heimberg, A.; Sempere, L.; Moy, V.; Donoghue, P.; Peterson, K. (2008). "MicroRNAs and the advent of vertebrate morphological complexity". Proceedings of the National Academy of Sciences of the United States of America 105 (8): 2946-2950.

He L, Hannon GJ (2004). "MicroRNAs: small RNAs with a big role in gene regulation". Nat. Rev. Genet. 5 (7): 522-31.

He L, Thomson JM, Hemann MT, et al. (2005). "A microRNA polycistron as a potential human oncogene". Nature 435 (7043): 828-33.

Hua YJ, Tu K, Tang ZY, Li YX, Xiao HS. Comparison of normalization methods with microRNA microarray. Genomics, 2008, 92(2): 122-128.

Hüttenhofer A, Schattner P, Polacek N (2005). "Non-coding RNAs: hope or hype?". Trends Genet. 21 (5): 289-97.

Hutvagner G, Zamore P D. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297:2056-2060.

Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. (2009). "miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Research 37: D98-104.

Ji, X (2008). "The mechanism of RNase III action: how dicer dices". Current topics in microbiology and immunology 320: 99-116.

Jonstrup SP, Koch J, Kjems J. 2006. A microRNA detection system based on padlock probes and rolling circle amplification. RNA. 12(9):1747-52.

Kai, Z.; Pasquinelli, A. (2010). "MicroRNA assassins: factors that regulate the disappearance of miRNAs". Nature structural & molecular biology 17 (1): 5-10.

Kaur H, Arora A, Wengel J, Maiti S, Arora A, Wengel J, Maiti S (2006). "Thermodynamic, Counterion, and Hydration Effects for the Incorporation of Locked Nucleic Acid Nucleotides into DNA Duplexes". Biochemistry 45 (23): 7347-55.

Kawasaki H, Taira K (2004). "MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells". Nucleic Acids Symp Ser 48 (48): 211-2.

Kawahara, Y.; Megraw, M.; Kreider, E.; Iizasa, H.; Valente, L.; Hatzigeorgiou, A.; Nishikura, K. (2008). "Frequency and fate of microRNA editing in human brain". Nucleic acids research 36 (16): 5270-5280.

Kim YK, Kim VN (2007). "Processing of intronic microRNAs". EMBO J. 26 (3): 775-83.

Klein, E.; Lioy, T.; Ma, L.; Impey, S.; Mandel, G.; Goodman, H. (2007). "Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA". Nature neuroscience 10 (12): 1513-1514.

Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (2007). "Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development". PLoS Biol. 5 (8): e203.

Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH (2004). "Substrate requirements for let-7 function in the developing zebrafish embryo". Nucleic Acids Res. 32 (21): 6284-91.

Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N. 2005. Combinatorial microRNA target predictions.Nat Genet. 37(5): 495-500.

Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ (2009). "MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis". RNA Biol 6 (1): 65-72.

Kubota K, Ohashi A, Imachi H, Harada H. Improved in situ hybridization efficiency with locked-nucleic-acid- incorporated DNA probes.  Appl Environ Microbiol, 2006, 72(8): 5311-5317.

Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS (2008). "Experimental validation of miRNA targets". Methods 44 (1): 47-54.

Kumar M S, Lu J, Mercer K L, Golub T R, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007, 39(5): 673-677.

Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002). "Identification of tissue-specific microRNAs from mouse". Curr. Biol. 12 (9): 735-9.

Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). "Identification of novel genes coding for small expressed RNAs". Science 294 (5543): 853-8.

Lau NC, Lim LP, Weinstein EG, Bartel DP (2001). "An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans". Science 294 (5543): 858-62.

Lee CT, Risom T, Strauss WM (2007). "Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny". DNA Cell Biol. 26 (4): 209-18.

Lee J, Li Z, Brower-Sinning R, John B. Regulatory Circuit of Human MicroRNA Biogenesis. PloS Comput Biol, 2007, 3(4): 67-71.

Lee R C, Ambros V (2001). "An extensive class of small RNAs in Caenorhabditis elegans". Science 294 (5543): 862-4.

Lee R C, Feinbaum RL, Ambros V (1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14". Cell 75 (5): 843-54.

Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004). "MicroRNA genes are transcribed by RNA polymerase II". EMBO J. 23 (20): 4051-60.

Lelandais-Brière C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (2010). "Small RNA diversity in plants and its impact in development". Current Genomics 11 (1): 14-23.

Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., Burge, C.B. 2003. Prediction of mammalian microRNA targets. Cell. 115, 787-798.

Li, C; Feng, Y; Coukos, G; Zhang, L (2009). "Therapeutic microRNA strategies in human cancer". The AAPS journal 11 (4): 747-57.

Li LC (2008). "Small RNA-Mediated Gene Activation". RNA and the Regulation of Gene Expression: A Hidden Layer of Complexity. Caister Academic Press. ISBN 978-1-904455-25-7. http://www.horizonpress.com/rnareg.

Li SC, Tang P, Lin WC. Intronic MicroRNA: Discoverry and Biological Implications. DNA Cell Biol. 2007, 26(4):195-207.

Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003). "The microRNAs of Caenorhabditis elegans". Genes Dev. 17 (8): 991-1008.

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005). "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs". Nature 433 (7027): 769-73.

Li SC, Tang P, Lin WC. Intronic MicroRNA: Discoverry and Biological Implications. DNA Cell Biol. 2007, 26(4):195-207.

Liu CG, Calin GA, Meloon  B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues.  Proc Natl Acad Sci USA, 2004, 101(26): 9740-9744.

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers.  Nature, 2005, 435(7043): 834-838.

Lund, E.; Dahlberg, J. (2006). "Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs". Cold Spring Harbor symposia on quantitative biology 71: 59-66.

MacRae, I.; Ma, E.; Zhou, M.; Robinson, C.; Doudna, J. (2008). "In vitro reconstitution of the human RISC-loading complex". Proceedings of the National Academy of Sciences of the United States of America 105 (2): 512-517.

Maes OC, Chertkow HM, Wang E, Schipper HM. MicroRNA: implications for alzheimer disease and other human CNS disorders. Curr. Genomics 2009, 10 (3)154-168.

Maroney PA, Chamnongpol S, Souret F, Nilsen TW. A rapid, quantitative assay for direct detection of microRNAs and other small RNAs using splinted ligation. RNA, 2007, 13(6): 930-936.

Maroney PA, Chamnongpol S, Souret F, Nilsen TW. Direct detection of small RNAs using splinted ligation. Nat Protoc, 2008, 3(2): 279-287.

Mazière P, Enright AJ (2007). "Prediction of microRNA targets". Drug Discov. Today 12 (11-12): 452-8.

Meister G, Landthaler M, Dorsett Y, Tuschl T (2004). "Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing". RNA 10 (3): 544-50.

Mraz M, Pospisilova S, Malinova K, et al. "MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes". Leuk Lymphoma 50 (3): 506-9.

Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007). "miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii". Nature 447 (7148): 1126-9.

Mourelatos Z, Dostie J, Paushkin S, et al. (2002). "miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs". Genes Dev. 16 (6): 720-8.

Moxon S, Jing R, Szittya G, et al. (2008). "Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening". Genome Res. 18 (10): 1602-9.

Murchison, E.; Hannon, G. (2004). "MiRNAs on the move: miRNA biogenesis and the RNAi machinery". Current opinion in cell biology 16 (3): 223-229.

Nelson, P.T. et al. (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 1, 155-161.

Nielsen BS, Jørgensen S, Fog JU, Søkilde R, Christensen IJ, Hansen U, Brünner N, Baker A, Møller S, Nielsen HJ (2010). "High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients". Clin Exp Metastasis.

Nozawa, M.; Miura, S.; Nei, M. (2010). "Origins and Evolution of MicroRNA Genes in Drosophila Species". Genome Biology and Evolution 2010: 180.

O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005). "c-Myc-regulated microRNAs modulate E2F1 expression". Nature 435 (7043): 839-43.

Ohman, M. (2007). "A-to-I editing challenger or ally to the microRNA process". Biochimie 89 (10): 1171-1176.

Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40-5.

Ouellet DL, Plante I, Landry P, Barat C, Janelle ME, Flamand L, Tremblay MJ, Provost P. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res, 2008, 36(7): 2353-2365.

Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res, 2007, 35(8): e60.

Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). "Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA". Nature 408 (6808): 86-9.

Peterson, K.; Dietrich, M.; McPeek, M. (2009). "MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion". BioEssays: news and reviews in molecular, cellular and developmental biology 31 (7): 736-747.

Pheasant M, Mattick JS (2007). "Raising the estimate of functional human sequences". Genome Res. 17 (9): 1245-53.

Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008). "MicroRNA-373 induces expression of genes with complementary promoter sequences". Proc. Natl. Acad. Sci. U.S.A. 105 (5): 1608-13.

Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (November 2004). "A pancreatic islet-specific microRNA regulates insulin secretion". Nature 432 (7014): 226-30.

Pratt, A., MacRae, I. (2009). "The RNA-induced silencing complex: a versatile gene-silencing machine". The Journal of biological chemistry 284 (27): 17897-17901.

Raihart B J, Slack F J, BassonM. The 21-nucleotide let-7 RNA regulates development timing in Caenorhabditis elegans . Nature, 2000 24: 901-905.

Rana, T. M. (2007). "Illuminating the silence: understanding the structure and function of small RNAs". Nature Reviews Molecular Cell Biology 8 (1): 23.

Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, John-son JM. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA, 2005, 11(11): 1737-1744.

Reinhart B J, Weinstein E G, Rhoades M W. MicroRNAs in plants. Genes & Development, 2002,16(13): 1616-1626.

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000). "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans". Nature 403 (6772): 901-6.

Richard J. Jackson, Nancy Standart. How Do MicroRNAs Regulate Gene Expression? Science, 2007: 1.

Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004). "Identification of mammalian microRNA host genes and transcription units". Genome Res. 14 (10A): 1902-10.

Schetter AJ, L1eung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG,Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA, 2008, 299(4): 425-436.

Schratt G (2009). "microRNAs at the synapse". Nat. Rev. Neurosci. 10 (12): 842-9.

Schwarz, D.; Zamore, P. (2002). "Why do miRNAs live in the miRNP?". Genes & development 16 (9): 1025-1031.

Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 2004, 5(3): R13.

Sethupathy P, Corda B, Hatzigeorgiou AG. 2006. TarBase: A comprehensive database of experimentally supported animal microRNA targets. RNA. 12(2): 192-7.

Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E (2005). "An optimized isolation and labeling platform for accurate microRNA expression profiling". RNA 11 (9): 1461-70.

Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR.  Biotechniques, 2005, 39(4):519-525.

Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005). "Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution". Cell 123 (6): 1133-46.

Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol, 2008, 18(2): 89-102.

Tatsuguchi M, Seok HY, Callis TE, et al. (2007). "Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy". J. Mol. Cell. Cardiol. 42 (6): 1137-41.

Tan Y, Zhang B, Wu T, et al. (2009). "Transcriptional inhibition of Hoxd4 expression by noncoding RNAs in human breast cancer cells". BMC Mol. Biol. 10 (1): 12.

Tanzer A, Stadler PF (2004). "Molecular evolution of a microRNA cluster". J. Mol. Biol. 339 (2): 327-35.

Thum T, Galuppo P, Wolf C, et al. (2007). "MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure". Circulation 116 (3): 258-67.

Tjaden, B.; Goodwin, S. S.; Opdyke, J. A.; Guillier, M.; Fu, D. X.; Gottesman, S.; Storz, G. (2006). "Target prediction for small, noncoding RNAs in bacteria". Nucleic Acids Research 34 (9): 2791.

Trang, P; Weidhaas, JB; Slack, FJ (2008). "MicroRNAs as potential cancer therapeutics". Oncogene 27 Suppl 2: S52-7.

van Rooij E, Sutherland LB, Liu N, et al. (2006). "A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure". Proc. Natl. Acad. Sci. U.S.A. 103 (48): 18255-60.

van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (2007). "Control of stress-dependent cardiac growth and gene expression by a microRNA". Science 316 (5824): 575-9.

Varallyay E, Burgyan J, Havelda Z. Detection of microRNAs by Northern blot analyses using LNA probes. Methods, 2007, 43(2): 140-145.

Varallyay E, Burgyan J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc, 2008, 3(2): 190-196.

V. Nany Kim. Small RNAs just got bigger. Piwi-interacting RNAs (piRNAs) in mammalian testes . Genes & Development, 2006, 20:1993-1997.

Wang X. 2008. miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA. 14(6): 1012-7.

Wang X, El Naqa IM. Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics. 200824(3): 325-32.

Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004). "Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets". Genome Biol. 5 (9): R65.

Weber MJ (2005). "New human and mouse microRNA genes found by homology search". FEBS J. 272 (1): 59-73.

Wilfred BR, Wang WX, Nelson PT (2007). "Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways". Mol. Genet. Metab. 91 (3): 209-17.

Williams AE (2008). "Functional aspects of animal microRNAs". Cell. Mol. Life Sci. 65 (4): 545-62.

Winter, J.; Jung, S.; Keller, S.; Gregory, R.; Diederichs, S. (2009). "Many roads to maturity: microRNA biogenesis pathways and their regulation". Nature cell biology 11 (3): 228-234.

Wheeler, B.; Heimberg, A.; Moy, V.; Sperling, E.; Holstein, T.; Heber, S.; Peterson, K. (2009). "The deep evolution of metazoan microRNAs". Evolution & development 11 (1): 50-68.

Wu L G, Fan J H, Belasco J G. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA, 2006, 103(11): 4034-4039.

Xiao J, Luo X, Lin H, et al. (2007). "MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts". J. Biol. Chem. 282 (17): 12363-7.

Yang B, Lin H, Xiao J, et al. (2007). "The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2". Nat. Med. 13 (4): 486-91.

Yang WJ, Li XB, Li YY, Zhao LF, He WL, Gao YQ, Wan YJ, Xia W, Chen T, Zheng H, Li M, Xu SQ. Quantification of microRNA by gold nanoparticle probes. Anal Biochem, 2008, 376(2): 183-188.

Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol, 2007, 8 (6): R96.

You Y, Moreira BG, Behlke MA, Owczarzy R (2006). "Design of LNA probes that improve mismatch discrimination". Nucleic Acids Res 34 (8): e60.

Zanesi, N; et al. (2010). "MicroRNAs in mouse models of lymphoid malignancies.". J Nucl Acid Invest 1 (8): 36-40.

Zhang C. MicroRNAs: role in cardiovascular biology and disease. Clin Sci (Lond), 2008, 114(12): 699-706.

Zhao Y, Ransom JF, Li A, et al. (2007). "Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2". Cell 129 (2): 303-17.

Zhao Y, Samal E, Srivastava D (2005). "Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis". Nature 436 (7048): 214-20.

Zhenbao Yu, Zhaofeng Jian, Shi-Hsiang Shen, Enrico Purisima, Edwin Wang. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos. Nucleic Acids Research, 2007, 35(1):152-164.

Zhou X, Ruan J, Wang G, Zhang W (2007). "Characterization and identification of microRNA core promoters in four model species". PLoS Comput. Biol. 3 (3): e37.

走进MicroRNA的大世界
  www.ebiotrade.com  时间:2005年08月05日     来源:生物通
------------------------------------------------------------------------------------------------------------------------------------

2000年,RNA的研究进展被美国《科学》杂志评为重大科技突破;2001年“RNA干扰”作为当年最重要的科学研究成果之一,再次入选“十大科技突破”;20021220日,Science杂志将“Small RNA & RNAi”评为2002年度最耀眼的明星。同时, Nature杂志亦将Small RNA评为年度重大科技成功之一。2003年,小核糖核酸的研究第四次入选十大科技突破,排在第四位。RNA研究的突破性进展,是生物医学领域近20年来,可与HGP(人类基因组计划,生物通网站注)相提并论的最重大成果之一。 

聚光灯下的RNA已经逐步摆脱了DNA光芒的掩盖,从“配角”变成“主角”,并且对DNA的中心地位提出了新的挑战。随着RNAi技术在生命领域的应用,RNAi的主要作用物siRNA对研究人员来说已经非常熟悉。而同属于小分子RNAmicroRNA(简称miRNA)则与RNAisiRNA有着莫大的关联,但是miRNAsiRNA又有着多方面的差异。 

研究发现miRNA的主要功能是调节生物体内在的与机体生长、发育、疾病发生过程有关的基因的表达,而且研究人员推测这种小分子调节着人类三分之一的基因!20056月至7月间,在顶级科学杂志Nature上先后发表了6篇有关miRNA的研究论文。这些最新的研究结果表明:miRNA还与病毒的复制有关(62Nature;淋巴瘤中,miRNA的一类miR17-92可能是潜在的致癌基因,并且发现一种叫做c-Myc的转录因子能调节miRNA69Nature);在616日的Nature上的一篇文章表明miRNA是干细胞不断分裂必须的;而714日的Nature上的一项研究发现了miRNA在心脏形成过程中的一个靶标。另有研究表明miRNA还与艾滋病、白血病、糖尿病、畸形等病变有关。 

MiRNA到底是谁?你知道miRNAsiRNA的区别在哪里以及如何区别它们吗?它与RNAi有着什么样的关系呢? MiRNA与疾病、生长发育有着什么样的关系?有关它的最新研究进展如何?…… 

在这流火的7月,让我们带着这些问题一起走进小RNA分子的大世界,走进生物通的7月的热点聚焦:microRNA的大世界。

第一回 MicroRNA的自白

 

“什么叫做浓缩的才是精华?我的一生都是在诉说着这个哲理。虽然我是五短身材,却能‘四两拨千斤’,我在生命中扮演的角色可不容小视。要想知道我究竟有多牛,你们还得好好研究研究呢!”,microRNA得意地说……

 

microRNA是谁? 

MicroRNA也可以写做miRNA ,是一种2125nt长的单链小分子RNA。它广泛存在于真核生物中,是一组不编码蛋白质的短序列RNA,其本身不具有开放阅读框(ORF)。成熟的miRNA5′端有一个磷酸基团,3′端为羟基。编码miRNAs的基因最初产生一个长的pri-RNA分子,这种初期分子还必须被剪切成70-90个碱基大小、具发夹结构单链RNA前体(pre-miRNA)并经过Dicer酶加工后生成。成熟的miRNA 5’端的磷酸基团和端羟基则是它与相同长度的功能RNA降解片段的区分标志。

miRNA 5'端第一个碱基对U(尿苷)有强烈的倾向性,而对G却排斥,但第二到第四个碱基缺乏U。一般来讲,除第四个碱基外,其他位置碱基通常都缺乏C这些分子能够与那些和它的序列互补的mRNA分子相结合,有时候甚至可以与特定的DNA片断结合。这种结合的结果就是导致基因的沉默。这种方式是身体调节基因表达的一个重要策略。据推测,miRNA调节着人类三分之一的基因。

 

miRNA研究的开端 

miRNA的研究起始于时序调控小RNAstRNAs)。1993年,Lee等在秀丽新小杆线虫(Caenorhabditis elegan)中发现了第一个定时调控胚胎后期发育的基因lin-42002年,Reinhart等又在线虫C.elegan中发现第二个异时性开关基因let-7200110月《science》报道了三个实验室从线虫、果蝇和人体克隆的几十个类似C.eleganlin-4的小RNA基因,称为microRNA。随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNAs,并且发现它与多种重要的生命过程有关。 

 

MiRNA的作用方式 

miRNA基因是一类高度保守的基因家族,按其作用模式不同可分为三种:第一种以线虫lin-4为代表,作用时与靶标基因不完全互补结合,进而抑制翻译而不影响mRNA的稳定性(不改变mRNA丰度),这种miRNA是目前发现最多的种类;第二种以拟南芥miR-171为代表,作用时与靶标基因完全互补结合,作用方式和功能与siRNA非常类似,最后切割靶mRNA;第三种以let-7为代表,它具有以上两种作用模式:当与靶标基因完全互补结合时,直接靶向切割mRNA,如果蝇和Hela细胞中let-7直接介导RISC分裂切割靶mRNA;当与靶标基因不完全互补结合时,起调节基因表达的作用,如线虫中的let-7与靶mRNA3´端非翻译区不完全配对结合后,抑制调节基因的翻译。

 

MiRNA的特异性 

研究表明MiRNAs在物种间具有高度的保守性、时序性和组织特异性——在特定的时间、组织才会表达。

细胞特异性或组织特异性是miRNA表达的主要特点,又如拟南芥中的miR-171仅在其花序中高水平表达,在某些组织低水平表达,在茎、叶等组织中却无任何表达的迹象;20-24h的果蝇胚胎提取物中可发现miR-12,却找不到miR3-miR6,在成年果蝇中表达的miR-1let-7也无法在果蝇胚胎中表达,这同时体现了miRNA的又一特点——基因表达时序性。MiRNA表达的时序性和组织特异性暗示miRNA的分布可能决定组织和细胞的功能特异性,也可能参与了复杂的基因调控,对组织的发育起重要作用。

 

第二回  miRNA与近亲siRNA的差异

 

MiRNA不爽地说,“因为siRNA先被人注意到,所以它在我之前成名。”接着,miRNA意兴昂然地讲起了它的身世……

 

“话说在“广袤”的细胞质中游荡着一个名叫Dicer的浪子。与此同时,在细胞的腹地‘细胞核’中,一个身形颀长的RNA降生了即pri-miRNADicer在细胞质中遇到了一个双链的RNA并被她所吸引,于是尾随她并最终在她身上咬了一口,结果siRNA降生了。Dicer又继续游荡,这时他看到了一个非常漂亮的发夹状的RNA(她其实就是在细胞核中降生的那条RNA的化身pre-miRNA),于是非常仰慕并最终历经艰辛将她咬了一口。这样我就“哇”的一声来到了这个世界上”miRNA说。“我和siRNA有许多共同点,但我们的差别也很多,所以可别把我们混在一起哦,”它补充说。

 

siRNARNAi途径的主要作用物,miRNAsiRNA很容易混淆,他们有许多共同点也有许多不同点。为了能够清楚地让读者弄清两者之间的差异之处,笔者特别将它们之间的差别划分入三个大的阶段:起源阶段、成熟阶段和功能阶段(即调节基因表达的作用阶段)。

 

在描述两者的差异之前,有必要先说一说它们的共同点:

1.  MiRNAsiRNA都是由22个左右的核苷组成;

2.  它们都是Dicer酶的产物;

3.  它们在起干扰、调节作用时都会和RISC复合体结合;

4.  它们都可以在转录后和翻译水平干扰以抑制靶标基因的翻译;

 

两者之间的主要差异:

起源阶段

SiRNA:通常是外源的,如病毒感染和人工插入的dsRNA被剪切后产生外源基因进入细胞(注:病毒入侵,或者是自身合成RNA中出现错误,细胞内就会产生双链RNA,来阻止这些异常基因的表达)

MiRNA:是内源性的,是一种非编码的RNA;由miRNA基因表达出最初的pri-miRNA分子。

成熟过程

SiRNA:直接来源是长链的dsRNA(通常为外源);经过Dicer*切割形成双链siRNA,而且每个前体daRNA能够被切割成不定数量的siRNA片段。

MiRNA:在细胞核中转录的较大的pri-miRNA经由Drosha(一种RNAse )Pasha(含有双链RNA结合区域)加工成为单链pre-miRNA;接着,发夹状、部分互补的pre-miRNA在细胞质中被Dicer*(一种RNAse 酶)酶切割形成miRNA;在生物体中的表达具有时序性、保守性和组织特异性。

 

功能阶段

siRNA:它与RISC*RNA诱导的沉默复合物,使用的AGO蛋白家族的成分为AGO2)结合,以RNAi途径行使功能,即通过与序列互补的靶标mRNA完全结合(与编码区结合),从而降解mRNA以达到抑制蛋白质翻译的目的;它通常用于沉默外源病毒、转座子活性。

MiRNA:它和RISC形成复合体(利用的AGO蛋白家族成员为AGO1)后与靶标mRNA通常发生不完全结合,并且结合的位点是mRNA的非编码区的3’端;它不会降解靶标mRNA,而只是阻止mRNA的翻译; miRNA能够调节与生长发育有关的基因。

 

注:RISC, RNA诱导的沉默复合物(RNA-induced silencing complex; RISC)的组装是在RNAimiRNA通路中最为复杂的过程。新的研究表明,与siRNAmiRNA结合的RISC复合物并不完全相同其中的AGO蛋白质有AGO1AGO2之分。刚产生的siRNAsmiRNAs都是双链结构,这种双链结构需要解螺旋才能被组装到RISC中发挥作用。组装后的复合物分别称为siRISCmiRISC。从dsRNA引发RNAi的发生大致划分为三个阶段,即启动、剪切和扩增。

Dicer酶:新的研究表明siRNA成熟需要Dicer-2R2D2蛋白,而miRNA则依赖Dicer1和它的伴侣loqs蛋白。

 

在研究人员的不懈努力之下,近期miRNA的基础研究以及应用研究方面取得了许多的重大进展……

 

第三回 MiRNA研究与疾病及研究进展

 

最近,miRNA常常在那些顶级杂志上露面,人类对它在生长发育中的调节功能以及与疾病关系的了解也一点一点地在增加。但是今天它好像有点心事重重的:“有人把我和疾病联系在一起,甚至把我叫做癌基因!但是,其实我的角色是多面的,如果利用的好,我可以帮助治疗绝症呢。我真希望你们能早日看清楚我的世界,这样就不会随便给我加罪名了,呜呜……”,miRNA抹抹眼泪说。


爱滋病毒

2001年,科学家发现一小段RNA可以关闭线虫体内的基因,这与早前发现的一些RNA小片段能使植物基因处于关闭状态的基因抑制现象十分相似;随后,又在老鼠和人的体细胞中发现了类似的RNA干扰现象。分子生物学家们认识到,这种RNA干扰对研究基因功能可能有非常重要的价值。
   
2002年针对RNA的进一步研究表明,一些长度较短的小RNA能够对细胞和基因的很多行为进行控制,如打开、关闭多种基因,降解一些不需要的信使RNA。其中最令人兴奋的发现是,小RNA在细胞分裂过程中也能发挥重要的控制作用,可以指导个体的发育和分化。
   
继发现长度较短的核糖核酸能调控基因表达之后,2003年科学家们继续专注于小RNA如何协调细胞习性的研究,正在探索如何利用小核糖核酸的本领来对付疾病。有关专家指出,这一领域的研究发现可以为操作干细胞分化提供新工具,并且可以用于探索治疗癌症等由于基因组错误所导致的疾病的新方法。
    目前认为miRNA在人体中有200多种类型。发表在62日的Nature杂志上的一项研究表明miRNA与感染的病毒的复制有关——之前认为这种分子只与内生的物质的调节有关,而于外源病毒的调节无关。因此,这一发现对miRNA的功能有了新的认识。
   
200569日的《自然》杂志上的文章显示microRNA的活动模式能够被用于诊断癌症。研究人员Todd R. GolubRobert Horvitz等人证明miRNA表达特征能用于划分人类癌症以及区别正常细胞和癌细胞。研究表明miRNA表达特征甚至能够鉴别出那些从外形上无法确定的癌细胞。发表在同期《自然》杂志上的第二篇文章表明一种特殊的miRNA束能够导致小鼠的淋巴瘤。由霍普金斯大学医学院的Joshua Mendell和同事发表在《自然》的第三篇文章显示一些miRNA与一种已知能导致人类癌症的基因相互协作。这让人怀疑miRNA可能充当一种新型的癌基因。通过确定出大多数常见癌症中表达的特殊miRNA以及分析它们对癌症发生和癌症基因的影响,这三项同期公布在《自然》杂志上的研究改变了癌症遗传学的前景。
   
新的研究表明miRNA在从癌症、心脏病到艾滋病的各种疾病中起到一定的作用,而且有间接的证据表明如果将两个miRNA从人类基因组中删除就会发生白血病。据推测,MiRNA能够调节人类的三分之一的基因。有研究表明miRNA能够调节Ras癌基因、干细胞分化、脊椎动物肢体的形成等。
   
在公布在《细胞》杂志上的研究中,洛克菲洛大学的Gaul和同事通过封闭在果蝇早期发育中起作用的46miRNA,从而证明这些miRNA的大多数与发育息息相关。佛罗里达大学的研究人员发现当miRNA不能关闭特定基因时,小鼠就会长成畸形。刊登在7月《自然》杂志上的一项研究表明miRNA在心脏细胞的生长和分化过程中扮演极其重要的平衡角色。
   
托马斯·杰斐逊大学杰斐逊医学院和Kimmel癌症中心的研究人员在PNAS上公布说,他们开发出了一种能用于在癌症和正常组织中寻找发生表达的miRNA以及表达方式的技术。他们开发出的miRNA芯片能够使他们检测到每种组织特有的miRNA表达模式。此前(20048月),杰斐逊的研究人员曾发现能够根据miRNA基因的表达模式来预测白血病。
   
可以肯定,miRNA并非身体中的“超高级智能”分子,它虽然主要是作为调节性因子而存在,但它也必然是受到其他“暗物质”的调节。已经有研究发现一种叫做c-Myc的转录因子能调节miRNA。对miRNA的基础研究以及应用研究还在不断的向着纵深发展,我们期待有更多新的研究成果不断涌现并最终能促进人类健康事业的发展。
……….

第四回 RNA干扰

 

在过去的数年中,RNA干扰已经成为了研究人员手中的一把锋利的剑,并且这种技术在分子生物学的位置已经无法被替代。RNAi的研究和技术利用也是名副其实的“焦点中的焦点”。加之,它的作用主体是miRNA的兄弟siRNA,因此有必要将它单独加以介绍。

……

1999年, Hamilton等在植物基因沉默的研究中首次发现2125nt dsRNA 的出现对转基因导致基因沉默十分重要,而在转基因正确表达的植株中则未出现。随后,Hammond 等进行的细胞提取物核酸酶活性实验证明了小分子RNARNAi 中的作用,这些小分子RNA就是由dsRNA形成的siRNA 

RNAi能够调节和关闭基因的表达,进而调控细胞的各种高级生命活动。RNAi的发现不仅提升了人们对RNA分子的认识,还大大推进基因功能的研究,更为各种类型的传染病和癌症提供了一种新的手段。近年来,有关RNAi研究成果令人眼花缭乱:人们利用RNAi途径来人为调节特定基因的表达以达到治疗遗传疾病甚至癌症的目的,而且已经有不少的成功信息公布。

…………


RNA干扰图解

尾声

 

我国对于RNA的研究曾经一度处于世界先进水平。在上世纪60年代,生物学领域刚刚开始了解核糖核酸的结构和功能,我们就进行了对RNA的研究。在1981年,我国出色地完成了一种小分子RNA———酵母丙氨酸tRNA的全合成,并且这种人工合成的RNA分子具有生物活性、完成了全部的碱基修饰,其产率和活性是世界上最高的。目前在RNA研究领域,国内一些实验室的工作也十分出色,研究水平是国际一流的,其中,上海生化所有关RNA的研究以及中山大学、武汉大学对于小RNA作用的研究等课题都有着卓越的成绩。

但是就目前整体情况来看,国内对RNA的研究的重视度还不够。虽然我国对于RNA的研究在某些方面曾领先世界,但目前总体来说还是十分薄弱的。但是,无论如何,我们期待中国的研究人员能够在这个领域的研究中放射出自己的光芒……(生物通杨淑娟)

 

摘要:
  MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,是发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成。其在细胞内具有多种重要的调节作 ......
目录 MicroRNA的概念

  MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,是发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成。其在细胞内具有多种重要的调节作用。每个miRNA可以有多个靶基因,而几个miRNAs也可以调节同一个基因。这种复杂的调节网络既可以通过一个miRNA来调控多个基因的表达,也可以通过几个miRNAs的组合来精细调控某个基因的表达。随着miRNA调控基因表达的研究的逐步深入,将帮助我们理解高等真核生物的基因组的复杂性和复杂的基因表达调控网络。miRNA广泛存在于真核生物中,是一组不编码蛋白质的短序列RNA,其本身不具有开放阅读框(ORF)。成熟的miRNA,5′端有一个磷酸基团,3′端为羟基。编码miRNAs的基因最初产生一个长的pri-RNA分子,这种初期分子还必须被剪切成约70-90个碱基大小、具发夹结构单链RNA前体(pre-miRNA)并经过Dicer酶加工后生成。成熟的miRNA 5’端的磷酸基团和3´端羟基则是它与相同长度的功能RNA降解片段的区分标志。miRNA 5'端第一个碱基对U(尿苷)有强烈的倾向性,而对G却排斥,但第二到第四个碱基缺乏U。一般来讲,除第四个碱基外,其他位置碱基通常都缺乏C。这些分子能够与那些和它的序列互补的mRNA分子相结合,有时候甚至可以与特定的DNA片断结合。这种结合的结果就是导致基因的沉默。这种方式是身体调节基因表达的一个重要

策略。据推测,miRNA调节着人类三分之一的基因。

MicroRNA
MicroRNA形式

    1. pre-miRNA
    约70bp含microRNA茎环结构的pre-miRNA。
    制备方式:化学合成、生物转录合成、pre-miRNA质粒表达载体、pre-miRNA病毒。
   2. pri-miRNA
      天然pri-miRNA
      从染色体基因文库中调取300bp-1000bp完整的microRNA基因,克隆到质粒载体(普通载体或病毒载体),以强大的CMV启动子操纵该300bp-1000bp microRNA。
      人工pri-miRNA
      选择一个完整的microRNA基因,克隆到质粒载体(普通载体或病毒载体)。以人工合成的约70bp含miRNA茎环结构的目标pre-RNA替代原pre-RNA,并以pol Ⅱ/pol III 启动子操纵、该microRNA结构单元。

MicroRNA的形式

MicroRNA的作用方式

       miRNA基因是一类高度保守的基因家族,按其作用模式不同可分为三种:第一种以线虫lin-4为代表,作用时与靶标基因不完全互补结合,进而抑制翻译而不影响mRNA的稳定性(不改变mRNA丰度),这种miRNA是目前发现最多的种类;第二种以拟南芥miR-171为代表,作用时与靶标基因完全互补结合,作用方式和功能与siRNA非常类似,最后切割靶mRNA;第三种以let-7为代表,它具有以上两种作用模式:当与靶标基因完全互补结合时,直接靶向切割mRNA,如果蝇和Hela细胞中let-7直接介导RISC分裂切割靶mRNA;当与靶标基因不完全互补结合时,起调节基因表达的作用,如线虫中的let-7与靶mRNA3´端非翻译区不完全配对结合后,抑制调节基因的翻译。

MiRNA的特异性

       研究表明MiRNAs在物种间具有高度的保守性、时序性和组织特异性——在特定的时间、组织才会表达。
       细胞特异性或组织特异性是miRNA表达的主要特点,又如拟南芥中的miR-171仅在其花序中高水平表达,在某些组织低水平表达,在茎、叶等组织中却无任何表达的迹象;20-24h的果蝇胚胎提取物中可发现miR-12,却找不到miR3-miR6,在成年果蝇中表达的miR-1和let-7也无法在果蝇胚胎中表达,这同时体现了miRNA的又一特点——基因表达时序性。MiRNA表达的时序性和组织特异性暗示miRNA的分布可能决定组织和细胞的功能特异性,也可能参与了复杂的基因调控,对组织的发育起重要作用。
siRNA是RNAi途径的主要作用物,miRNA和siRNA很容易混淆,他们有许多共同点也有许多不同点。为了能够清楚地让读者弄清两者之间的差异之处,笔者特别将它们之间的差别划分入三个大的阶段:起源阶段、成熟阶段和功能阶段(即调节基因表达的作用阶段)。

 

在描述两者的差异之前,有必要先说一说它们的共同点:

1.  MiRNA和siRNA都是由22个左右的核苷组成;

2.  它们都是Dicer酶的产物;

3.  它们在起干扰、调节作用时都会和RISC复合体结合;

4.  它们都可以在转录后和翻译水平干扰以抑制靶标基因的翻译;

miRNA与近亲siRNA的差异

两者之间的主要差异:

起源阶段
SiRNA:通常是外源的,如病毒感染和人工插入的dsRNA被剪切后产生外源基因进入细胞(注:病毒入侵,或者是自身合成RNA中出现错误,细胞内就会产生双链RNA,来阻止这些异常基因的表达)。
MiRNA:是内源性的,是一种非编码的RNA;由miRNA基因表达出最初的pri-miRNA分子。

成熟过程
SiRNA:直接来源是长链的dsRNA(通常为外源);经过Dicer酶*切割形成双链siRNA,而且每个前体daRNA能够被切割成不定数量的siRNA片段。
MiRNA:在细胞核中转录的较大的pri-miRNA经由Drosha(一种RNAse Ⅲ酶)和Pasha(含有双链RNA结合区域)加工成为单链pre-miRNA;接着,发夹状、部分互补的pre-miRNA在细胞质中被Dicer*(一种RNAse Ⅲ酶)酶切割形成miRNA;在生物体中的表达具有时序性、保守性和组织特异性。

 功能阶段

siRNA:它与RISC*(RNA诱导的沉默复合物,使用的AGO蛋白家族的成分为AGO2)结合,以RNAi途径行使功能,即通过与序列互补的靶标mRNA完全结合(与编码区结合),从而降解mRNA以达到抑制蛋白质翻译的目的;它通常用于沉默外源病毒、转座子活性。

MiRNA:它和RISC形成复合体(利用的AGO蛋白家族成员为AGO1)后与靶标mRNA通常发生不完全结合,并且结合的位点是mRNA的非编码区的3’端;它不会降解靶标mRNA,而只是阻止mRNA的翻译; miRNA能够调节与生长发育有关的基因。
注:RISC, RNA诱导的沉默复合物(RNA-induced silencing complex; RISC)的组装是在RNAi和miRNA通路中最为复杂的过程。新的研究表明,与siRNA和miRNA结合的RISC复合物并不完全相同其中的AGO蛋白质有AGO1和AGO2之分。刚产生的siRNAs和miRNAs都是双链结构,这种双链结构需要解螺旋才能被组装到RISC中发挥作用。组装后的复合物分别称为siRISC和miRISC。从dsRNA引发RNAi的发生大致划分为三个阶段,即启动、剪切和扩增。
Dicer酶:新的研究表明siRNA成熟需要Dicer-2和R2D2蛋白,而miRNA则依赖Dicer1和它的伴侣loqs蛋白。

MicroRNA选择方法
    1.pre-miRNA是最早采用的microRNA,拥有大量的成功报道。化学合成的pre-miRNA制备快捷,可以标记荧光等追踪。缺点是制备的RNA稳定性较差,而且,由于制备的microRNA较长,合成时RNA的错误难以避免(当合成RNA超过60bp时,出现一个碱基错误率约30%),转录制备的pre-miRNA稳定性较好,但无flank结构,很少使用。质粒载体形式的pre-miRNA也因为发现microRNA的flank对于microRNA功能和测定非常重要,现已逐渐被pri-miRNA取代。
     2.人工pri-miRNA效果较pre-miRNA好,也有足够多的成功使用的经验报道,但这种人工microRNA采用固定的mir155 flank,制备的microRNA功能不及天然原始microRNA,故也逐渐较少使用。
     3.原始天然pri-miRNA克隆自天然文库的microRNA由于保留了每个microRNA独自的原始天然双臂结构,效果更好,是近来被首选方法。
     4.pre-miRNA或pri-miRNA腺病毒:可以转染大多数绝细胞,产品质量可靠。缺点是腺病毒有一定的毒性,以往实验腺病毒毒性并未引起重视,但我们发现在microRNA实验中显得比较突出。另外,制备周期长,费用高也是不容忽视的缺点。
     5.慢病毒microRNA:目前最好的microRNA实验产品,缺点是慢病毒自身的不足,即制备lenti-virus时,病毒的质量批间差异较大。
AAV、或retrovirus microRNA:与腺病毒和lenti-virus microRNA一样,具有病毒产品的优势与缺点。
 

 

MicroRNA

http://en.wikipedia.org/wiki/MicroRNA

From Wikipedia, the free encyclopedia
Jump to: navigation, search
The stem-loop secondary structure of a pre-microRNA from Brassica oleracea.

A microRNA (abbreviated miRNA) is a short ribonucleic acid (RNA) molecule found in all eukaryotic cells, except those of fungi, algae, and marine plants.[citation needed] A microRNA molecule has very few nucleotides (an average of 22) compared with other RNAs.

MiRNAs are post-transcriptional regulators that bind to complementary sequences on target messenger RNA transcripts (mRNAs), usually resulting in translational repression or target degradation and gene silencing.[1][2] The human genome may encode over 1000 miRNAs,[3][4] which may target about 60% of mammalian genes[5][6] and are abundant in many human cell types.[7]

miRNAs show very different characteristics between plants and metazoans. In plants the miRNA complementarity to its mRNA target is nearly perfect, with no or few mismatched bases. In metazoans, on the other hand, miRNA complementarity typically encompasses the 5' bases 2-7 of the microRNA, the microRNA seed region,[5][8] and one miRNA can target many different sites on the same mRNA or on many different mRNAs. Another difference is the location of target sites on mRNAs. In metazoans, the miRNA target sites are in the three prime untranslated regions (3'UTR) of the mRNA. In plants, targets can be located in the 3' UTR but are more often in the coding region itself.[9] MiRNAs are well conserved in eukaryotic organisms and are thought to be a vital and evolutionarily ancient component of genetic regulation.[10][11][12][13]

The first miRNAs were characterized in the early 1990s. However, miRNAs were not recognized as a distinct class of biological regulators with conserved functions until the early 2000s. Since then, miRNA research has revealed multiple roles in negative regulation (transcript degradation and sequestering, translational suppression) and possible involvement in positive regulation (transcriptional and translational activation). By affecting gene regulation, miRNAs are likely to be involved in most biological processes.[14][15][16][17][18][19][20] Different sets of expressed miRNAs are found in different cell types and tissues.[21]

Aberrant expression of miRNAs has been implicated in numerous disease states, and miRNA-based therapies are under investigation

History

MicroRNAs were discovered in 1993 by Victor Ambros, Rosalind Lee and Rhonda Feinbaum during a study of the gene lin-14 in C. elegans development.[25] They found that LIN-14 protein abundance was regulated by a short RNA product encoded by the lin-4 gene. A 61-nucleotide precursor from the lin-4 gene matured to a 22-nucleotide RNA that contained sequences partially complementary to multiple sequences in the 3’ UTR of the lin-14 mRNA. This complementarity was both necessary and sufficient to inhibit the translation of the lin-14 mRNA into the LIN-14 protein. Retrospectively, the lin-4 small RNA was the first microRNA to be identified, though at the time, it was thought to be a nematode idiosyncrasy. Only in 2000 was a second RNA characterized: let-7, which repressed lin-41, lin-14, lin-28, lin-42, and daf-12 expression during developmental stage transitions in C. elegans. let-7 was soon found to be conserved in many species,[26][27] indicating the existence of a wider phenomenon.

 Nomenclature

Under a standard nomenclature system, names are assigned to experimentally confirmed miRNAs before publication of their discovery.[28][29] The prefix "mir" is followed by a dash and a number, the latter often indicating order of naming. For example, mir-123 was named and likely discovered prior to mir-456. The uncapitalized "mir-" refers to the pre-miRNA, while a capitalized "miR-" refers to the mature form. miRNAs with nearly identical sequences bar one or two nucleotides are annotated with an additional lower case letter. For example, miR-123a would be closely related to miR-123b. Pre-miRNAs that lead to 100% identical mature miRNAs but that are located at different places in the genome are indicated with an additional dash-number suffix. For example, the pre-miRNAs hsa-mir-194-1 and hsa-mir-194-2 lead to an identical mature miRNA (hsa-miR-194) but are located in different regions of the genome. Species of origin is designated with a three-letter prefix, e.g., hsa-miR-123 is a human (Homo sapiens)miRNA and oar-miR-123 is a sheep (Ovis aries) miRNA. Other common prefixes include 'v' for viral (miRNA encoded by a viral genome) and 'd' for Drosophila miRNA (a fruit fly commonly studied in genetic research). When two mature microRNAs originate from opposite arms of the same pre-miRNA, they are denoted with a -3p or -5p suffix. (In the past, this distinction was also made with 's' (sense) and 'as' (antisense)). When relative expression levels are known, an asterisk following the name indicates an miRNA expressed at low levels relative to the miRNA in the opposite arm of a hairpin. For example, miR-123 and miR-123* would share a pre-miRNA hairpin, but more miR-123 would be found in the cell.

 Biogenesis
MicroRNAs are produced from either their own genes or from introns. A video of this process can be found here.

Most microRNA genes are found in intergenic regions or in anti-sense orientation to genes[30] and contain their own miRNA gene promoter and regulatory units.[30][31][32][33] As much as 40% of miRNA genes may lie in the introns of protein and non-protein coding genes or even in exons of long nonprotein-coding transcripts.[34] These are usually, though not exclusively, found in a sense orientation.[35][36] and thus usually are regulated together with their host genes.[34][37][38] Other miRNA genes showing a common promoter include the 42-48% of all miRNAs originating from polycistronic units containing multiple discrete loops from which mature miRNAs are processed,[31][39] although this does not necessarily mean the mature miRNAs of a family will be homologous in structure and function. The promoters mentioned have been shown to have some similarities in their motifs to promoters of other genes transcribed by RNA polymerase II such as protein coding genes.[31][40] The DNA template is not the final word on mature miRNA production: 6% of human miRNAs show RNA editing, the site-specific modification of RNA sequences to yield products different from those encoded by their DNA. This increases the diversity and scope of miRNA action beyond that implicated from the genome alone.

Transcription

miRNA genes are usually transcribed by RNA polymerase II (Pol II).[31][40] The polymerase often binds to a promoter found near the DNA sequence encoding what will become the hairpin loop of the pre-miRNA. The resulting transcript is capped with a specially-modified nucleotide at the 5’ end, polyadenylated with multiple adenosines (a poly(A) tail),[31][35] and spliced. The product, called a primary miRNA (pri-miRNA), may be hundreds or thousands of nucleotides in length and contain one or more miRNA stem-loops.[31][35] When a stem-loop precursor is found in the 3’ UTR, a transcript may serve as a pri-miRNA and a mRNA.[35] RNA polymerase III (Pol III) transcribes some miRNAs, especially those with upstream Alu sequences, transfer RNAs (tRNAs), and mammalian wide interspersed repeat (MWIR) promoter units.[41]

 Nuclear processing

A single pri-miRNA may contain from one to six miRNA precursors. These hairpin loop structures are composed of about 70 nucleotides each. Each hairpin is flanked by sequences necessary for efficient processing. The double-stranded RNA structure of the hairpins in a pri-miRNA is recognized by a nuclear protein known as DiGeorge Syndrome Critical Region 8 (DGCR8 or "Pasha" in invertebrates), named for its association with DiGeorge Syndrome. DGCR8 associates with the enzyme Drosha, a protein that cuts RNA, to form the "Microprocessor" complex.[42] In this complex, DGCR8 orients the catalytic RNase III domain of Drosha to liberate hairpins from pri-miRNAs by cleaving RNA about eleven nucleotides from the hairpin base (two helical RNA turns into the stem). The resulting hairpin, known as a pre-miRNA (precursor-miRNA), has a two-nucleotide overhang at its 3’ end; it has 3' hydroxyl and 5' phosphate groups.

pre-miRNAs that are spliced directly out of introns, bypassing the Microprocessor complex, are known as "Mirtrons." Originally thought to exist only in Drosophila and C. elegans, mirtrons have now been found in mammals.[43]

Perhaps as many as 16% of pri-miRNAs may be altered through nuclear RNA editing.[44][45][46] Most commonly, enzymes known as adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine (A to I) transitions. RNA editing can halt nuclear processing (for example, of pri-miR-142, leading to degradation by the ribonuclease Tudor-SN) and alter downstream processes including cytoplasmic miRNA processing and target specificity (e.g., by changing the seed region of miR-376 in the central nervous system).[44]

 Nuclear export

pre-miRNA hairpins are exported from the nucleus in a process involving the nucleocytoplasmic shuttle Exportin-5. This protein, a member of the karyopherin family, recognizes a two-nucleotide overhang left by the RNase III enzyme Drosha at the 3' end of the pre-miRNA hairpin. Exportin-5-mediated transport to the cytoplasm is energy-dependent, using GTP bound to the Ran protein.[47]

Cytoplasmic processing

In the cytoplasm, the pre-miRNA hairpin is cleaved by the RNase III enzyme Dicer.[48] This endoribonuclease interacts with the 3' end of the hairpin and cuts away the loop joining the 3' and 5' arms, yielding an imperfect miRNA:miRNA* duplex about 22 nucleotides in length.[48] Overall hairpin length and loop size influence the efficiency of Dicer processing, and the imperfect nature of the miRNA:miRNA* pairing also affects cleavage.[48][49] Although either strand of the duplex may potentially act as a functional miRNA, only one strand is usually incorporated into the RNA-induced silencing complex (RISC) where the miRNA and its mRNA target interact.

 Biogenesis in plants

miRNA biogenesis in plants differs from metazoan biogenesis mainly in the steps of nuclear processing and export. Instead of being cleaved by two different enzymes, once inside and once outside the nucleus, both cleavages of the plant miRNA is performed by a Dicer homolog, called Dicer-like1 (DL1). DL1 is only expressed in the nucleus of plant cells, which indicates that both reactions take place inside the nucleus. Before plant miRNA:miRNA* duplexes are transported out of the nucleus its 3' overhangs are methylated by a RNA methyltransferaseprotein called Hua-Enhancer1 (HEN1). The duplex is then transported out of the nucleus to the cytoplasm by a protein called Hasty (HST), an Exportin 5 homolog, where they disassemble and the mature miRNA is incorporated into the RISC.[50]

 The RNA-induced silencing complex

The mature miRNA is part of an active RNA-induced silencing complex (RISC) containing Dicer and many associated proteins.[51] RISC is also known as a microRNA ribonucleoprotein complex (miRNP);[52] RISC with incorporated miRNA is sometimes referred to as "miRISC."

Dicer processing of the pre-miRNA is thought to be coupled with unwinding of the duplex. Generally, only one strand is incorporated into the miRISC, selected on the basis of its thermodynamic instability and weaker base-pairing relative to the other strand.[53][54][55] The position of the stem-loop may also influence strand choice.[56] The other strand, called the passenger strand due to its lower levels in the steady state, is denoted with an asterisk (*) and is normally degraded. In some cases, both strands of the duplex are viable and become functional miRNA that target different mRNA populations.[57]

Members of the argonaute (Ago) protein family are central to RISC function. Argonautes are needed for miRNA-induced silencing and contain two conserved RNA binding domains: a PAZ domain that can bind the single stranded 3’ end of the mature miRNA and a PIWI domain that structurally resembles ribonuclease-H and functions to interact with the 5’ end of the guide strand. They bind the mature miRNA and orient it for interaction with a target mRNA. Some argonautes, for example human Ago2, cleave target transcripts directly; argonautes may also recruit additional proteins to achieve translational repression.[58] The human genome encodes eight argonaute proteins divided by sequence similarities into two families: AGO (with four members present in all mammalian cells and called E1F2C/hAgo in humans), and PIWI (found in the germ line and hematopoietic stem cells).[58][59]

Additional RISC components include TRBP [human immunodeficiency virus (HIV) transactivating response RNA (TAR) binding protein],[60] PACT (protein activator of the interferon induced protein kinase (PACT), the SMN complex, fragile X mental retardation protein (FMRP), and Tudor staphylococcal nuclease-domain-containing protein (Tudor-SN).[61][62]

 Mode of Silencing

Gene silencing may occur either via mRNA degradation or preventing mRNA from being translated. It has been demonstrated that if there is complete complementation between the miRNA and target mRNA sequence, Ago2 can cleave the mRNA and lead to direct mRNA degradation. Yet, if there isn't complete complementation the silencing is achieved by preventing translation.[63]

 miRNA turnover

Turnover of mature miRNA is needed for rapid changes in miRNA expression profiles. During miRNA maturation in the cytoplasm, uptake by the Argonaute protein is thought to stabilize the guide strand, while the opposite (* or "passenger") strand is preferentially destroyed. In what has been called a "Use it or lose it" strategy, Argonaute may preferentially retain miRNAs with many targets over miRNAs with few or no targets, leading to degradation of the non-targeting molecules.[64]

Decay of mature miRNAs in animals is mediated by the 5´-to-3´ exoribonuclease XRN2, also known as Rat1p.[65] In plants, SDN (small RNA degrading nuclease) family members degrade miRNAs in the opposite (3'-to-5') direction. Similar enzymes are encoded in animal genomes, but their roles have not yet been described.[64]

Several miRNA modifications affect miRNA stability. As indicated by work in the model organism Arabidopsis thaliana (thale cress), mature plant miRNAs appear to be stabilized by the addition of methyl moieties at the 3' end. The 2'-O-conjugated methyl groups block the addition of uracil (U) residues by uridyltransferase enzymes, a modification that may be associated with miRNA degradation. However, uridylation may also protect some miRNAs; the consequences of this modification are incompletely understood. Uridylation of some animal miRNAs has also been reported. Both plant and animal miRNAs may be altered by addition of adenine (A) residues to the 3' end of the miRNA. An extra A added to the end of mammalian miR-122, a liver-enriched miRNA important in Hepatitis C, stabilizes the molecule, and plant miRNAs ending with an adenine residue have slower decay rates.[64]

 Cellular functions

The function of miRNAs appears to be in gene regulation. For that purpose, a miRNA is complementary to a part of one or more messenger RNAs (mRNAs). Animal miRNAs are usually complementary to a site in the 3' UTR whereas plant miRNAs are usually complementary to coding regions of mRNAs.[66] Perfect or near perfect base pairing with the target RNA promotes cleavage of the RNA.[67] This is the primary mode of plant microRNAs.[68] In animals, microRNAs more often only partially base pair and inhibit protein translation of the target mRNA[69] (this exists in plants as well but is less common).[68] MicroRNAs that are partially complementary to a target can also speed up deadenylation, causing mRNAs to be degraded sooner.[70] For partially complementary microRNAs to recognise their targets, nucleotides 2–7 of the miRNA (its 'seed region'[5][8]) still have to be perfectly complementary.[71] miRNAs occasionally also cause histone modification and DNA methylation of promoter sites, which affects the expression of target genes.[72][73]

Unlike plant microRNAs, the animal microRNAs target a diverse set of genes.[8] However, genes involved in functions common to all cells, such as gene expression, have relatively fewer microRNA target sites and seem to be under selection to avoid targeting by microRNAs.[74]

dsRNA can also activate gene expression, a mechanism that has been termed "small RNA-induced gene activation" or RNAa. dsRNAs targeting gene promoters can induce potent transcriptional activation of associated genes. This was demonstrated in human cells using synthetic dsRNAs termed small activating RNAs (saRNAs),[75] but has also been demonstrated for endogenous microRNA.[76]

Interactions between microRNAs and complementary sequences on genes and even pseudogenes that share sequence homology are thought to be a back channel of communication regulating expression levels between paralogous genes. Given the name "competing endogenous RNAs" (ceRNAs), these microRNAs bind to "microRNA response elements" on genes and pseudogenes and may provide another explanation for the persistence of non-coding ("junk") DNA.[77]

 Evolution

MicroRNAs are significant phylogenetic markers because of their astonishingly low rate of evolution.[78] Their origin may have permitted the development of morphological innovation, and by making gene expression more specific and 'fine-tunable', permitted the genesis of complex organs[79] and perhaps, ultimately, complex life.[80] Indeed, rapid bursts of morphological innovation are generally associated with a high rate of microRNA accumulation.[78][79]

MicroRNAs originate predominantly by the random formation of hairpins in "non-coding" sections of DNA (i.e. introns or intergene regions), but also by the duplication and modification of existing microRNAs.[81] The rate of evolution (i.e. nucleotide substitution) in recently-originated microRNAs is comparable to that elsewhere in the non-coding DNA, implying evolution by neutral drift; however, older microRNAs have a much lower rate of change (often less than one substitution per hundred million years),[80] suggesting that once a microRNA gains a function it undergoes extreme purifying selection.[81] At this point, a microRNA is rarely lost from an animal's genome,[80] although microRNAs which are more recently derived (and thus presumably non-functional) are frequently lost.[81] This makes them a valuable phylogenetic marker, and they are being looked upon as a possible solution to such outstanding phylogenetic problems as the relationships of arthropods.[82]

MicroRNAs feature in the genomes of most eukaryotic organisms, from the brown algae[83] to the metazoa. Across all species, in excess of 5000 had been identified by March 2010.[84] Whilst short RNA sequences (50 – hundreds of base pairs) of a broadly comparable function occur in bacteria, bacteria lack true microRNAs.[85]

 Experimental detection and manipulation of miRNA

MicroRNA expression can be quantified in a two-step polymerase chain reaction process of modified RT-PCR followed by quantitative real-time PCR. Variations of this method achieve absolute or relative quantification.[86] miRNAs can also be hybridized to microarrays, slides or chips with probes to hundreds or thousands of miRNA targets, so that relative levels of miRNAs can be determined in different samples.[87] MicroRNAs can be both discovered and profiled by high-throughput sequencing methods.[88] The activity of an miRNA can be experimentally inhibited using a locked nucleic acid (LNA) oligo, a Morpholino oligo[89][90] or a 2'-O-methyl RNA oligo.[91] Additionally, a specific miRNA can be silenced by a complementary antagomir. MicroRNA maturation can be inhibited at several points by steric-blocking oligos.[92] The miRNA target site of an mRNA transcript can also be blocked by a steric-blocking oligo.[93][94] For the “in situ” detection of miRNA, the use of LNA is currently the only efficient method.[95] The locked conformation of LNA results in enhanced hybridization properties and increases sensitivity and selectivity, making it ideal for detection of short miRNA.[96]

 miRNA and disease

Just as miRNA is involved in the normal functioning of eukaryotic cells, so has dysregulation of miRNA been associated with disease. A manually curated, publicly available database miR2Disease documents known relationships between miRNA dysregulation and human disease.[97]

miRNA and cancer

Several miRNAs have been found to have links with some types of cancer.[98][99] MicroRNA-21 is one of the first microRNAs that was identified as an oncomiR.

A study of mice altered to produce excess c-Myc — a protein with mutated forms implicated in several cancers — shows that miRNA has an effect on the development of cancer. Mice that were engineered to produce a surplus of types of miRNA found in lymphoma cells developed the disease within 50 days and died two weeks later. In contrast, mice without the surplus miRNA lived over 100 days.[98] Leukemia can be caused by the insertion of a viral genome next to the 17-92 array of microRNAs leading to increased expression of this microRNA.[100]

Another study found that two types of miRNA inhibit the E2F1 protein, which regulates cell proliferation. miRNA appears to bind to messenger RNA before it can be translated to proteins that switch genes on and off.[101]

By measuring activity among 217 genes encoding miRNA, patterns of gene activity that can distinguish types of cancers can be discerned. miRNA signatures may enable classification of cancer. This will allow doctors to determine the original tissue type which spawned a cancer and to be able to target a treatment course based on the original tissue type. miRNA profiling has already been able to determine whether patients with chronic lymphocytic leukemia had slow growing or aggressive forms of the cancer.[102]

Transgenic mice that over-express or lack specific miRNAs have provided insight into the role of small RNAs in various malignancies.[103]

A novel miRNA-profiling based screening assay for the detection of early-stage colorectal cancer has been developed and is currently in clinical trials. Early results showed that blood plasma samples collected from patients with early, resectable (Stage II) colorectal cancer could be distinguished from those of sex-and age-matched healthy volunteers. Sufficient selectivity and specificity could be achieved using small (less than 1 mL) samples of blood. The test has potential to be a cost-effective, non-invasive way to identify at-risk patients who should undergo colonoscopy.[104][105]

 miRNA and heart disease

The global role of miRNA function in the heart has been addressed by conditionally inhibiting miRNA maturation in the murine heart, and has revealed that miRNAs play an essential role during its development.[106][107] miRNA expression profiling studies demonstrate that expression levels of specific miRNAs change in diseased human hearts, pointing to their involvement in cardiomyopathies.[108][109][110] Furthermore, studies on specific miRNAs in animal models have identified distinct roles for miRNAs both during heart development and under pathological conditions, including the regulation of key factors important for cardiogenesis, the hypertrophic growth response, and cardiac conductance.[107][111][112][113][114][115]

 miRNA and the nervous system

miRNAs appear to regulate the nervous system.[116] Neural miRNAs are involved at various stages of synaptic development, including dendritogenesis (involving miR-132, miR-134 and miR-124), synapse formation and synapse maturation (where miR-134 and miR-138 are thought to be involved).[117] Some studies find altered miRNA expression in schizophrenia.[118][119]

 miRNA and non-coding RNAs

When the human genome project mapped its first chromosome in 1999, it was predicted the genome would contain over 100,000 protein coding genes. However, only around 20,000 were eventually identified (International Human Genome Sequencing Consortium, 2004).[120] Since then, the advent of bioinformatics approaches combined with genome tiling studies examining the transcriptome,[121] systematic sequencing of full length cDNA libraries,[122] and experimental validation[123] (including the creation of miRNA derived antisense oligonucleotides called antagomirs) have revealed that many transcripts are non protein-coding RNA, including several snoRNAs and miRNAs.[124]

See also

References

  1. ^ Bartel, DP (2009). "MicroRNAs: target recognition and regulatory functions". Cell 136 (2): 215–33. doi:10.1016/j.cell.2009.01.002. PMID 19167326.  edit
  2. ^ Bartel DP (January 2004). "MicroRNAs: genomics, biogenesis, mechanism, and function". Cell 116 (2): 281–97. doi:10.1016/S0092-8674(04)00045-5. PMID 14744438. 
  3. ^ Homo sapiens miRNAs in the miRBase at Manchester University
  4. ^ Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (July 2005). "Identification of hundreds of conserved and nonconserved human microRNAs". Nat. Genet. 37 (7): 766–70. doi:10.1038/ng1590. PMID 15965474. 
  5. ^ a b c Lewis BP, Burge CB, Bartel DP (2005). "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets". Cell 120 (1): 15–20. doi:10.1016/j.cell.2004.12.035. PMID 15652477. 
  6. ^ Friedman RC, Farh KK, Burge CB, Bartel DP (January 2009). "Most mammalian mRNAs are conserved targets of microRNAs". Genome Res. 19 (1): 92–105. doi:10.1101/gr.082701.108. PMC 2612969. PMID 18955434. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2612969. 
  7. ^ Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (April 2003). "The microRNAs of Caenorhabditis elegans". Genes Dev. 17 (8): 991–1008. doi:10.1101/gad.1074403. PMC 196042. PMID 12672692. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=196042. 
  8. ^ a b c Lewis BP, Shih IH, Jones-Rhoades M, Bartel DP, Burge CB (2003). "Prediction of Mammalian MicroRNA Targets". Cell 115 (7): 787–798. doi:10.1016/S0092-8674(03)01018-3. PMID 14697198. 
  9. ^ He L, Hannon GJ (July 2004). "MicroRNAs: small RNAs with a big role in gene regulation". Nat. Rev. Genet. 5 (7): 522–31. doi:10.1038/nrg1379. PMID 15211354. 
  10. ^ Tanzer A, Stadler PF (May 2004). "Molecular evolution of a microRNA cluster". J. Mol. Biol. 339 (2): 327–35. doi:10.1016/j.jmb.2004.03.065. PMID 15136036. 
  11. ^ Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (June 2007). "miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii". Nature 447 (7148): 1126–9. doi:10.1038/nature05903. PMID 17538623. 
  12. ^ Kren BT, Wong PY, Sarver A, Zhang X, Zeng Y, Steer CJ (2009). "MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis". RNA Biol 6 (1): 65–72. doi:10.4161/rna.6.1.7534. PMID 19106625. 
  13. ^ Lee CT, Risom T, Strauss WM (April 2007). "Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny". DNA Cell Biol. 26 (4): 209–18. doi:10.1089/dna.2006.0545. PMID 17465887. 
  14. ^ Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (February 2005). "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs". Nature 433 (7027): 769–73. doi:10.1038/nature03315. PMID 15685193. 
  15. ^ Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (April 2003). "bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila". Cell 113 (1): 25–36. doi:10.1016/S0092-8674(03)00231-9. PMID 12679032. 
  16. ^ Cuellar TL, McManus MT (December 2005). "MicroRNAs and endocrine biology". J. Endocrinol. 187 (3): 327–32. doi:10.1677/joe.1.06426. PMID 16423811. 
  17. ^ Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (November 2004). "A pancreatic islet-specific microRNA regulates insulin secretion". Nature 432 (7014): 226–30. doi:10.1038/nature03076. PMID 15538371. 
  18. ^ Chen CZ, Li L, Lodish HF, Bartel DP (January 2004). "MicroRNAs modulate hematopoietic lineage differentiation". Science 303 (5654): 83–6. doi:10.1126/science.1091903. PMID 14657504. 
  19. ^ Wilfred BR, Wang WX, Nelson PT (July 2007). "Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways". Mol. Genet. Metab. 91 (3): 209–17. doi:10.1016/j.ymgme.2007.03.011. PMC 1978064. PMID 17521938. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1978064. 
  20. ^ Harfe BD, McManus MT, Mansfield JH, Hornstein E, Tabin CJ (August 2005). "The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb". Proc. Natl. Acad. Sci. U.S.A. 102 (31): 10898–903. doi:10.1073/pnas.0504834102. PMC 1182454. PMID 16040801. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1182454. 
  21. ^ Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (April 2002). "Identification of tissue-specific microRNAs from mouse". Curr. Biol. 12 (9): 735–9. doi:10.1016/S0960-9822(02)00809-6. PMID 12007417. 
  22. ^ Trang, P; Weidhaas, JB; Slack, FJ (2008). "MicroRNAs as potential cancer therapeutics". Oncogene 27 Suppl 2: S52–7. doi:10.1038/onc.2009.353. PMID 19956180.  edit
  23. ^ Li, C; Feng, Y; Coukos, G; Zhang, L (2009). "Therapeutic microRNA strategies in human cancer". The AAPS journal 11 (4): 747–57. doi:10.1208/s12248-009-9145-9. PMC 2782079. PMID 19876744. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2782079.  edit
  24. ^ Fasanaro, P.; Greco, S.; Ivan, M.; Capogrossi, M.; Martelli, F. (2010). "MicroRNA: emerging therapeutic targets in acute ischemic diseases". Pharmacology & therapeutics 125 (1): 92–104. doi:10.1016/j.pharmthera.2009.10.003. PMID 19896977.  edit
  25. ^ Lee RC, Feinbaum RL, Ambros V (December 1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14". Cell 75 (5): 843–54. doi:10.1016/0092-8674(93)90529-Y. PMID 8252621. 
  26. ^ Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (February 2000). "The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans". Nature 403 (6772): 901–6. Bibcode 2000Natur.403..901R. doi:10.1038/35002607. PMID 10706289. 
  27. ^ Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (November 2000). "Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA". Nature 408 (6808): 86–9. doi:10.1038/35040556. PMID 11081512. 
  28. ^ Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (March 2003). "A uniform system for microRNA annotation". RNA 9 (3): 277–9. doi:10.1261/rna.2183803. PMC 1370393. PMID 12592000. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1370393. 
  29. ^ Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (January 2006). "miRBase: microRNA sequences, targets and gene nomenclature". Nucleic Acids Res. 34 (Database issue): D140–4. doi:10.1093/nar/gkj112. PMC 1347474. PMID 16381832. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1347474. 
  30. ^ a b Lau NC, Lim LP, Weinstein EG, Bartel DP (October 2001). "An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans". Science 294 (5543): 858–62. doi:10.1126/science.1065062. PMID 11679671. 
  31. ^ a b c d e f Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (October 2004). "MicroRNA genes are transcribed by RNA polymerase II". EMBO J. 23 (20): 4051–60. doi:10.1038/sj.emboj.7600385. PMC 524334. PMID 15372072. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=524334. 
  32. ^ Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (October 2001). "Identification of novel genes coding for small expressed RNAs". Science 294 (5543): 853–8. doi:10.1126/science.1064921. PMID 11679670. 
  33. ^ Lee RC, Ambros V (October 2001). "An extensive class of small RNAs in Caenorhabditis elegans". Science 294 (5543): 862–4. doi:10.1126/science.1065329. PMID 11679672. 
  34. ^ a b Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (October 2004). "Identification of mammalian microRNA host genes and transcription units". Genome Res. 14 (10A): 1902–10. doi:10.1101/gr.2722704. PMC 524413. PMID 15364901. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=524413. 
  35. ^ a b c d Cai X, Hagedorn CH, Cullen BR (December 2004). "Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs". RNA 10 (12): 1957–66. doi:10.1261/rna.7135204. PMC 1370684. PMID 15525708. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1370684. 
  36. ^ Weber MJ (January 2005). "New human and mouse microRNA genes found by homology search". FEBS J. 272 (1): 59–73. doi:10.1111/j.1432-1033.2004.04389.x. PMID 15634332. 
  37. ^ Kim YK, Kim VN (February 2007). "Processing of intronic microRNAs". EMBO J. 26 (3): 775–83. doi:10.1038/sj.emboj.7601512. PMC 1794378. PMID 17255951. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1794378. 
  38. ^ Baskerville S, Bartel DP (March 2005). "Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes". RNA 11 (3): 241–7. doi:10.1261/rna.7240905. PMC 1370713. PMID 15701730. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1370713. 
  39. ^ Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005). "Clustering and conservation patterns of human microRNAs". Nucleic Acids Res. 33 (8): 2697–706. doi:10.1093/nar/gki567. PMC 1110742. PMID 15891114. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1110742. 
  40. ^ a b Zhou X, Ruan J, Wang G, Zhang W (March 2007). "Characterization and identification of microRNA core promoters in four model species". PLoS Comput. Biol. 3 (3): e37. doi:10.1371/journal.pcbi.0030037. PMC 1817659. PMID 17352530. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1817659. 
  41. ^ Faller, M.; Guo, F. (2008). "MicroRNA biogenesis: there's more than one way to skin a cat.". Biochimica et Biophysica Acta 1779 (11): 663–667. doi:10.1016/j.bbagrm.2008.08.005. PMC 2633599. PMID 18778799. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2633599.  edit
  42. ^ Gregory, R.; Chendrimada, T.; Shiekhattar, R. (2006). "MicroRNA biogenesis: isolation and characterization of the microprocessor complex". Methods in molecular biology (Clifton, N.J.) 342: 33–48. doi:10.1385/1-59745-123-1:33. ISBN 1-59745-123-1. PMID 16957365.  edit
  43. ^ Berezikov, E.; Chung, W.; Willis, J.; Cuppen, E.; Lai, E. (2007). "Mammalian mirtron genes". Molecular cell 28 (2): 328–336. doi:10.1016/j.molcel.2007.09.028. PMC 2763384. PMID 17964270. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2763384.  edit
  44. ^ a b Kawahara, Y.; Megraw, M.; Kreider, E.; Iizasa, H.; Valente, L.; Hatzigeorgiou, A.; Nishikura, K. (2008). "Frequency and fate of microRNA editing in human brain". Nucleic acids research 36 (16): 5270–5280. doi:10.1093/nar/gkn479. PMC 2532740. PMID 18684997. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2532740.  edit
  45. ^ Winter, J.; Jung, S.; Keller, S.; Gregory, R.; Diederichs, S. (2009). "Many roads to maturity: microRNA biogenesis pathways and their regulation". Nature cell biology 11 (3): 228–234. doi:10.1038/ncb0309-228. PMID 19255566.  edit
  46. ^ Ohman, M. (2007). "A-to-I editing challenger or ally to the microRNA process". Biochimie 89 (10): 1171–1176. doi:10.1016/j.biochi.2007.06.002. PMID 17628290.  edit
  47. ^ Murchison, E.; Hannon, G. (2004). "MiRNAs on the move: miRNA biogenesis and the RNAi machinery". Current opinion in cell biology 16 (3): 223–229. doi:10.1016/j.ceb.2004.04.003. PMID 15145345.  edit
  48. ^ a b c Lund, E.; Dahlberg, J. (2006). "Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs". Cold Spring Harbor symposia on quantitative biology 71: 59–66. doi:10.1101/sqb.2006.71.050. PMID 17381281.  edit
  49. ^ Ji, X. (2008). "The mechanism of RNase III action: how dicer dices". Current topics in microbiology and immunology 320: 99–116. doi:10.1007/978-3-540-75157-1_5. PMID 18268841.  edit
  50. ^ Lelandais-Brière C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (March 2010). "Small RNA diversity in plants and its impact in development". Current Genomics 11 (1): 14–23. doi:10.2174/138920210790217918. PMC 2851111. PMID 20808519. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2851111. 
  51. ^ Rana, T. M. (2007). "Illuminating the silence: understanding the structure and function of small RNAs". Nature Reviews Molecular Cell Biology 8 (1): 23. doi:10.1038/nrm2085. PMID 17183358.  edit
  52. ^ Schwarz, D.; Zamore, P. (2002). "Why do miRNAs live in the miRNP?". Genes & development 16 (9): 1025–1031. doi:10.1101/gad.992502. PMID 12000786.  edit
  53. ^ Krol J, Sobczak K, Wilczynska U, Drath M, Jasinska A, Kaczynska D, Krzyzosiak WJ (2004). "Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design.". J Biol Chem 279 (40): 42230–9. doi:10.1074/jbc.M404931200. PMID 15292246. 
  54. ^ Khvorova A, Reynolds A, Jayasena SD (2003). "Functional siRNAs and miRNAs exhibit strand bias.". Cell 115 (2): 209–16. doi:10.1016/S0092-8674(03)00801-8. PMID 14567918. 
  55. ^ Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003). "Asymmetry in the assembly of the RNAi enzyme complex.". Cell 115 (2): 199–208. doi:10.1016/S0092-8674(03)00759-1. PMID 14567917. 
  56. ^ Lin SL, Chang D, Ying SY (2005). "Asymmetry of intronic pre-miRNA structures in functional RISC assembly.". Gene 356: 32–8. doi:10.1016/j.gene.2005.04.036. PMC 1788082. PMID 16005165. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1788082. 
  57. ^ Okamura K, Chung WJ, Lai EC (2008). "The long and short of inverted repeat genes in animals: microRNAs, mirtrons and hairpin RNAs.". Cell Cycle 7 (18): 2840–5. doi:10.4161/cc.7.18.6734. PMC 2697033. PMID 18769156. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2697033. 
  58. ^ a b Pratt, A.; MacRae, I. (2009). "The RNA-induced silencing complex: a versatile gene-silencing machine". The Journal of biological chemistry 284 (27): 17897–17901. doi:10.1074/jbc.R900012200. PMC 2709356. PMID 19342379. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2709356.  edit
  59. ^ Schwarz, D.; Zamore, P. (2002). "Why do miRNAs live in the miRNP?". Genes & development 16 (9): 1025–1031. doi:10.1101/gad.992502. PMID 12000786.  edit
  60. ^ MacRae, I.; Ma, E.; Zhou, M.; Robinson, C.; Doudna, J. (2008). "In vitro reconstitution of the human RISC-loading complex". Proceedings of the National Academy of Sciences of the United States of America 105 (2): 512–517. Bibcode 2008PNAS..105..512M. doi:10.1073/pnas.0710869105. PMC 2206567. PMID 18178619. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2206567.  edit
  61. ^ Murchison, E.; Hannon, G. (2004). "MiRNAs on the move: miRNA biogenesis and the RNAi machinery". Current opinion in cell biology 16 (3): 223–229. doi:10.1016/j.ceb.2004.04.003. PMID 15145345.  edit
  62. ^ Mourelatos Z, Dostie J, Paushkin S, et al. (March 2002). "miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs". Genes Dev. 16 (6): 720–8. doi:10.1101/gad.974702. PMC 155365. PMID 11914277. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=155365. 
  63. ^ Lim, Lee; Nelson C. Lau, Philip Garrett-Engele, Andrew Grimson, Janell M. Schelter, John Castle, David P. Bartel, Peter S. Linsley, Jason M. Johnson (17). "Microarray analysis shows that some microRNAs downregulate large number of target mRNAs". Nature 433 (7027): 769–773. doi:10.1038/nature03315. PMID 15685193. 
  64. ^ a b c Kai, Z.; Pasquinelli, A. (2010). "MicroRNA assassins: factors that regulate the disappearance of miRNAs". Nature structural & molecular biology 17 (1): 5–10. doi:10.1038/nsmb.1762. PMID 20051982.  edit
  65. ^ Chatterjee S, Großhans H (September 2009). "Active turnover modulates mature microRNA activity in Caenorhabditis elegans". Nature 461 (7263): 546–459. doi:10.1038/nature08349. PMID 19734881. 
  66. ^ Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004). "Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets". Genome Biol. 5 (9): R65. doi:10.1186/gb-2004-5-9-r65. PMC 522872. PMID 15345049. http://genomebiology.com/2004/5/9/R65. 
  67. ^ Kawasaki H, Taira K (2004). "MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells". Nucleic Acids Symp Ser 48 (48): 211–2. doi:10.1093/nass/48.1.211. PMID 17150553. 
  68. ^ a b Moxon S, Jing R, Szittya G, et al. (October 2008). "Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening". Genome Res. 18 (10): 1602–9. doi:10.1101/gr.080127.108. PMC 2556272. PMID 18653800. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2556272. 
  69. ^ Williams AE (February 2008). "Functional aspects of animal microRNAs". Cell. Mol. Life Sci. 65 (4): 545–62. doi:10.1007/s00018-007-7355-9. PMID 17965831. 
  70. ^ Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (January 2009). "Deadenylation is a widespread effect of miRNA regulation". RNA 15 (1): 21–32. doi:10.1261/rna.1399509. PMC 2612776. PMID 19029310. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2612776. 
  71. ^ Mazière P, Enright AJ (June 2007). "Prediction of microRNA targets". Drug Discov. Today 12 (11-12): 452–8. doi:10.1016/j.drudis.2007.04.002. PMID 17532529. 
  72. ^ Tan Y, Zhang B, Wu T, et al. (February 2009). "Transcriptional inhibition of Hoxd4 expression by noncoding RNAs in human breast cancer cells". BMC Mol. Biol. 10: 12. doi:10.1186/1471-2199-10-12. PMC 2680403. PMID 19232136. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2680403. 
  73. ^ Hawkins PG, Morris KV (March 2008). "RNA and transcriptional modulation of gene expression". Cell Cycle 7 (5): 602–7. doi:10.4161/cc.7.5.5522. PMC 2877389. PMID 18256543. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2877389. 
  74. ^ Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005). "Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution". Cell 123 (6): 1133–46. doi:10.1016/j.cell.2005.11.023. PMID 16337999. 
  75. ^ Li LC (2008). "Small RNA-Mediated Gene Activation". RNA and the Regulation of Gene Expression: A Hidden Layer of Complexity. Caister Academic Press. ISBN 978-1-904455-25-7. http://www.horizonpress.com/rnareg. 
  76. ^ Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008). "MicroRNA-373 induces expression of genes with complementary promoter sequences". Proc. Natl. Acad. Sci. U.S.A. 105 (5): 1608–13. doi:10.1073/pnas.0707594105. PMC 2234192. PMID 18227514. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2234192. 
  77. ^ Salmena, Leonardo; Poliseno, Laura; Tay, Yvonne; Kats, Lev; Pandolfi, Pier Paolo (2011). "A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language?". Cell (Elsevier Inc) 146 (3): 353–358. doi:10.1016/j.cell.2011.07.014. http://www.cell.com/abstract/S0092-8674(11)00812-9. Retrieved 15 August 2011. 
  78. ^ a b Wheeler, B.; Heimberg, A.; Moy, V.; Sperling, E.; Holstein, T.; Heber, S.; Peterson, K. (2009). "The deep evolution of metazoan microRNAs". Evolution & development 11 (1): 50–68. doi:10.1111/j.1525-142X.2008.00302.x. PMID 19196333.  edit
  79. ^ a b Heimberg, A.; Sempere, L.; Moy, V.; Donoghue, P.; Peterson, K. (2008). "MicroRNAs and the advent of vertebrate morphological complexity". Proceedings of the National Academy of Sciences of the United States of America 105 (8): 2946–2950. Bibcode 2008PNAS..105.2946H. doi:10.1073/pnas.0712259105. PMC 2268565. PMID 18287013. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2268565.  edit
  80. ^ a b c Peterson, K.; Dietrich, M.; McPeek, M. (2009). "MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion". BioEssays : news and reviews in molecular, cellular and developmental biology 31 (7): 736–747. doi:10.1002/bies.200900033. PMID 19472371.  edit
  81. ^ a b c Nozawa, M.; Miura, S.; Nei, M. (2010). "Origins and Evolution of MicroRNA Genes in Drosophila Species". Genome Biology and Evolution 2010: 180–189. doi:10.1093/gbe/evq009. PMC 2942034. PMID 20624724. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2942034.  edit
  82. ^ Caravas, J.; Friedrich, M. (2010). "Of mites and millipedes: Recent progress in resolving the base of the arthropod tree". BioEssays 32 (6): 488. doi:10.1002/bies.201000005. PMID 20486135.  edit
  83. ^ Cock, J. M.; Sterck, L.; Rouzé, P.; Scornet, D.; Allen, A. E.; Amoutzias, G.; Anthouard, V.; Artiguenave, F. O. et al. (2010). "The Ectocarpus genome and the independent evolution of multicellularity in brown algae". Nature 465 (7298): 617–621. Bibcode 2010Natur.465..617C. doi:10.1038/nature09016. PMID 20520714.  edit
  84. ^ Dimond, Patricia F. (15 March 2010). "miRNAs' Therapeutic Potential". Genetic Engineering & Biotechnology News 30 (6): p. 1. Archived from the original on 10 July 2010. http://www.webcitation.org/5r7L7BfnG. Retrieved 10 July 2010 
  85. ^ Tjaden, B.; Goodwin, S. S.; Opdyke, J. A.; Guillier, M.; Fu, D. X.; Gottesman, S.; Storz, G. (2006). "Target prediction for small, noncoding RNAs in bacteria". Nucleic Acids Research 34 (9): 2791. doi:10.1093/nar/gkl356. PMC 1464411. PMID 16717284. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1464411.  edit
  86. ^ Caifu, Chen; Dana A. Ridzon, Adam J. Broomer, Zhaohui Zhou, Danny H. Lee, Julie T. Nguyen, Maura Barbisin, Nan Lan Xu, Vikram R. Mahuvakar, Mark R. Andersen, Kai Qin Lao, Kenneth J. Livak and Karl J. Guegler (2005-10-25). "Real-time quantification of microRNAs by stem–loop RT–PCR". Nucleic Acids Research 33 (20): e179. doi:10.1093/nar/gni178. PMC 1292995. PMID 16314309. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1292995. 
  87. ^ Shingara J, Keiger K, Shelton J, Laosinchai-Wolf W, Powers P, Conrad R, Brown D, Labourier E (September 2005). "An optimized isolation and labeling platform for accurate microRNA expression profiling". RNA 11 (9): 1461–70. doi:10.1261/rna.2610405. PMC 1370829. PMID 16043497. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1370829. 
  88. ^ Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT, 't Hoen PA. (December 2010). "New methods for next generation sequencing based microRNA expression profiling". BMC Genomics 11: 716. doi:10.1186/1471-2164-11-716. PMC 3022920. PMID 21171994. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3022920. 
  89. ^ Kloosterman WP, Wienholds E, Ketting RF, Plasterk RH (2004). "Substrate requirements for let-7 function in the developing zebrafish embryo". Nucleic Acids Res. 32 (21): 6284–91. doi:10.1093/nar/gkh968. PMC 535676. PMID 15585662. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=535676. 
  90. ^ Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG (February 2007). "Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate". Nat. Genet. 39 (2): 259–63. doi:10.1038/ng1953. PMID 17220889. 
  91. ^ Meister G, Landthaler M, Dorsett Y, Tuschl T (March 2004). "Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing". RNA 10 (3): 544–50. doi:10.1261/rna.5235104. PMC 1370948. PMID 14970398. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1370948. 
  92. ^ Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH (August 2007). "Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development". PLoS Biol. 5 (8): e203. doi:10.1371/journal.pbio.0050203. PMC 1925136. PMID 17676975. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1925136. 
  93. ^ Choi, WY; Giraldez AJ, Schier AF (2007). "Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430.". Science. 318 (5848): 271–4. doi:10.1126/science.1147535. PMID 17761850. 
  94. ^ Klein, E.; Lioy, T.; Ma, L.; Impey, S.; Mandel, G.; Goodman, H. (Dec 2007). "Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA". Nature neuroscience 10 (12): 1513–1514. doi:10.1038/nn2010. ISSN 1097-6256. PMID 17994015.  edit
  95. ^ You Y, Moreira BG, Behlke MA, Owczarzy R (2006). "Design of LNA probes that improve mismatch discrimination". Nucleic Acids Res 34 (8): e60. doi:10.1093/nar/gkl175. PMC 1456327. PMID 16670427. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1456327. 
  96. ^ Kaur H, Arora A, Wengel J, Maiti S, Arora A, Wengel J, Maiti S (2006). "Thermodynamic, Counterion, and Hydration Effects for the Incorporation of Locked Nucleic Acid Nucleotides into DNA Duplexes". Biochemistry 45 (23): 7347–55. doi:10.1021/bi060307w. PMID 16752924. 
  97. ^ Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. (January 2009). "miR2Disease: a manually curated database for microRNA deregulation in human disease.". Nucleic Acids Research. 37 (Database issue) (Database issue): D98–104. doi:10.1093/nar/gkn714. PMC 2686559. PMID 18927107. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2686559. 
  98. ^ a b He L, Thomson JM, Hemann MT, et al. (June 2005). "A microRNA polycistron as a potential human oncogene". Nature 435 (7043): 828–33. doi:10.1038/nature03552. PMID 15944707. 
  99. ^ Mraz M, Pospisilova S, Malinova K, et al. (March 2009). "MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes". Leuk Lymphoma 50 (3): 506–9. doi:10.1080/10428190902763517. PMID 19347736. 
  100. ^ Cui JW, Li YJ, Sarkar A, Brown J, Tan YH, Premyslova M, Michaud C, Iscove N, Wang GJ, Ben-David Y. (June 2007). "Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation.". Blood 110 (7): 2631–40. doi:10.1182/blood-2006-10-053850. PMID 17586726. 
  101. ^ O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (June 2005). "c-Myc-regulated microRNAs modulate E2F1 expression". Nature 435 (7043): 839–43. doi:10.1038/nature03677. PMID 15944709. 
  102. ^ Lu J, Getz G, Miska EA, et al. (June 2005). "MicroRNA expression profiles classify human cancers". Nature 435 (7043): 834–8. doi:10.1038/nature03702. PMID 15944708. 
  103. ^ Zanesi, N; et al. (2010). "MicroRNAs in mouse models of lymphoid malignancies.". J Nucl Acid Invest 1 (8): 36–40. doi:10.4081/jnai.2010.e8. 
  104. ^ Screening Tool Can Detect Colorectal Cancer from a Small Blood Sample (Press release). American Association for Cancer Research. 2010-09-29. http://www.aacr.org/home/public--media/aacr-press-releases.aspx?d=2068. Retrieved 2010-11-29. 
  105. ^ Nielsen BS, Jørgensen S, Fog JU, Søkilde R, Christensen IJ, Hansen U, Brünner N, Baker A, Møller S, Nielsen HJ (October 2010). "High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients". Clin Exp Metastasis 28 (1): 27–38. doi:10.1007/s10585-010-9355-7. PMC 2998639. PMID 21069438. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2998639. 
  106. ^ Chen JF, Murchison EP, Tang R, et al. (February 2008). "Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure". Proc. Natl. Acad. Sci. U.S.A. 105 (6): 2111–6. doi:10.1073/pnas.0710228105. PMC 2542870. PMID 18256189. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2542870. 
  107. ^ a b Zhao Y, Ransom JF, Li A, et al. (April 2007). "Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2". Cell 129 (2): 303–17. doi:10.1016/j.cell.2007.03.030. PMID 17397913. 
  108. ^ Thum T, Galuppo P, Wolf C, et al. (July 2007). "MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure". Circulation 116 (3): 258–67. doi:10.1161/CIRCULATIONAHA.107.687947. PMID 17606841. 
  109. ^ van Rooij E, Sutherland LB, Liu N, et al. (November 2006). "A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure". Proc. Natl. Acad. Sci. U.S.A. 103 (48): 18255–60. doi:10.1073/pnas.0608791103. PMC 1838739. PMID 17108080. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1838739. 
  110. ^ Tatsuguchi M, Seok HY, Callis TE, et al. (June 2007). "Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy". J. Mol. Cell. Cardiol. 42 (6): 1137–41. doi:10.1016/j.yjmcc.2007.04.004. PMC 1934409. PMID 17498736. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1934409. 
  111. ^ Zhao Y, Samal E, Srivastava D (July 2005). "Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis". Nature 436 (7048): 214–20. doi:10.1038/nature03817. PMID 15951802. 
  112. ^ Xiao J, Luo X, Lin H, et al. (April 2007). "MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts". J. Biol. Chem. 282 (17): 12363–7. doi:10.1074/jbc.C700015200. PMID 17344217. http://www.jbc.org/cgi/pmidlookup?view=long&pmid=17344217. 
  113. ^ Yang B, Lin H, Xiao J, et al. (April 2007). "The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2". Nat. Med. 13 (4): 486–91. doi:10.1038/nm1569. PMID 17401374. 
  114. ^ Carè A, Catalucci D, Felicetti F, et al. (May 2007). "MicroRNA-133 controls cardiac hypertrophy". Nat. Med. 13 (5): 613–8. doi:10.1038/nm1582. PMID 17468766. 
  115. ^ van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN (April 2007). "Control of stress-dependent cardiac growth and gene expression by a microRNA". Science (journal) 316 (5824): 575–9. doi:10.1126/science.1139089. PMID 17379774. 
  116. ^ Maes OC, Chertkow HM, Wang E, Schipper HM (May 2009). "MicroRNA: Implications for Alzheimer Disease and other Human CNS Disorders". Current Genomics 10 (3): 154–68. doi:10.2174/138920209788185252. PMC 2705849. PMID 19881909. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2705849. 
  117. ^ Schratt G (December 2009). "microRNAs at the synapse". Nat. Rev. Neurosci. 10 (12): 842–9. doi:10.1038/nrn2763. PMID 19888283. 
  118. ^ Feng J, Sun G, Yan J, Noltner K, Li W, Buzin CH, Longmate J, Heston LL, Rossi J, Sommer SS (2009). Reif, Andreas. ed. "Evidence for X-chromosomal schizophrenia associated with microRNA alterations". PLoS ONE 4 (7): e6121. doi:10.1371/journal.pone.0006121. PMC 2699475. PMID 19568434. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2699475. 
  119. ^ Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ (September 2009). "Schizophrenia is associated with an increase in cortical microRNA biogenesis". Mol. Psychiatry 15 (12): 1176–89. doi:10.1038/mp.2009.84. PMC 2990188. PMID 19721432. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2990188. 
  120. ^ Pheasant M, Mattick JS (September 2007). "Raising the estimate of functional human sequences". Genome Res. 17 (9): 1245–53. doi:10.1101/gr.6406307. PMID 17690206. 
  121. ^ Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (December 2004). "Global identification of human transcribed sequences with genome tiling arrays". Science 306 (5705): 2242–6. doi:10.1126/science.1103388. PMID 15539566. 
  122. ^ Ota T, Suzuki Y, Nishikawa T, et al. (January 2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039. 
  123. ^ Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS (January 2008). "Experimental validation of miRNA targets". Methods 44 (1): 47–54. doi:10.1016/j.ymeth.2007.09.005. PMC 2237914. PMID 18158132. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2237914. 
  124. ^ Hüttenhofer A, Schattner P, Polacek N (May 2005). "Non-coding RNAs: hope or hype?". Trends Genet. 21 (5): 289–97. doi:10.1016/j.tig.2005.03.007. PMID 15851066. 
 Further reading

External links

Look up microRNA or miRNA in Wiktionary, the free dictionary.

http://en.wikipedia.org/wiki/MicroRNA


路过

雷人

握手

鲜花

鸡蛋

评论 (0 个评论)

facelist

你需要登录后才可以评论 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-5 13:34

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.