干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索

生物液晶态 (Biological Liquid crystalline state)

已有 3392 次阅读 2011-9-1 19:29

     液晶态物质广泛存在于自然界,据统计约每200种有机化合物中就有一种是液晶分子。生命系统中液晶态结构也普遍存在。液晶态为我们从物理角度理解和阐明生物大分子、细胞结构与功能的关系提供了一个有用的概念。
 
液晶态结缔组织
液晶是一种介于液相和固相之间的中间相,具有流动性和有序性,其性质表明它是一种极适于生命特征的状态.生命体中的蛋白质、核酸、多糖、脂类等都能够通过自组装而呈现液晶态,其液晶行为与细胞和组织功能的表达有关.本文介绍了液晶的分类、表征方法及生命体内的蛋白质、脱氧核糖核酸、多糖、脂类的液晶特性以及液晶态的生物材料与细胞的相互作用.  
 
液晶态温度中度升高时极性脂质分子呈现的几种相态之一。有两种主要的类型:①片层相或Lα相;②六角相。液晶态脂质分子的堆砌较松,其脂酰链能获得较晶态为多的流动性。
  物质在熔融状态或在溶液状态下虽然获得了液态物质的流动性,但在材料内部仍然保留有分子排列的一维或二维有序,在物理性质上表现出各向异性。这种兼有晶体和液体部分性质的状态称为液晶态,处于这种状态下的物质叫液晶。
  液晶态——结晶态和液态之间的一种形态,是一种在一定温度范围内呈现既不同于固态、液态,又不同于气态的特殊物质态,它既具有各向异性的晶体所特有的双折射性,又具有液体的流动性。一般可分热致液晶和溶致液晶两类。在显示应用领域,使用的是热致液晶,超出一定温度范围,热致液晶就不再呈现液晶态,温度低了,出现结晶现象,温度升高了,就变成液体。
  液晶态既像液体具有流动性和连续性,而其分子又保持着固态晶体特有的规则排列方式,具有光学性质各向异性等晶体特征的物理性质。其结构介于晶体和液体之间,所以也称它为介晶态。
  由于液晶态物质特殊的微观结构,因而呈现出许多奇妙的性质,如光学透射率、反射率、颜色等性能对外界的力、热、声、电、光、磁等物理环境的变化十分敏感,因而在电子工业等领域里可以大显神通。目前,液晶的应用领域主要有:显示、软件复制、检测器、感受器及分析化学等方面。
 
Liquid crystal models of biological materials and processes
Alejandro D. Rey
Soft Matter, 2010, 6, 3402-3429

DOI: 10.1039/B921576J
Received 14 Oct 2009, Accepted 23 Feb 2010
First published on the web 09 Apr 2010

This paper presents an overview of liquid crystal (LC) models of phase diagrams, phase transitions, self-assembly, interfaces, defects, and rheology and their integrated applications to biological mesophase materials and processes. Biological liquid crystals, classified into analogues (helicoidal plywoods), biopolymer solutions (in vitro DNA, polypeptides, collagen solutions) and in vivo LCs (membranes, silk, DNA), are discussed in terms of molecular characteristics and the symmetry of the thermodynamic phases. The thermodynamics and self-assembly of biological liquid crystals (BLCs) are discussed in terms of the DoiMaier Saupe lyotropic model and its extensions to chiral phases, showing the role of excluded volume and chirality. The defect physics of BLCs is described using the Landau–de Gennes model of chiral and achiral nematostatics to identify (i) thermodynamic phases, and (ii) observed textures and defect lattices under confinement and flow. The rheology and flow properties of BLCs are described using the Leslie–Ericksen and the Landau–de Gennes models of nematodynamics. The applications of integrated thermodynamic/defect/rheology modeling to the experimental characterization of several BLCs, including collagen and DNA solutions, are shown to provide organizing principles and quantitative tools to establish the properties of these natural materials. The phase transitions, tactoidal spherulites, flow-birefringence in dilute solutions, and banded textures in sheared concentrated solutions of collagen show how the principles of LC physics operate in BLC materials. Drying and spreading drops of DNA solutions leading to the formation of nematic monodomain aligned along the contact line are shown to follow self-assembly structuring under the action of interfacial, bulk, and contact line torques. Finally modeling of spider and silkworm LC spinning is presented as an example of biological polymer processing, where a high performance fiber material is produced through a lyotropic LC protein solution. The concerted structuring action of capillary confinement, strong anchoring, and nematic flow leads to predictions in agreement with the reported textural transitions in the duct of spiders and silkworms. The quantitative description of BLC materials and processes using mesoscopic models provides another tool to develop the science and future biomimetic applications of these ubiquitous natural anisotropic soft materials.


 
 
生物膜液晶

生物学家早就发现了生物活细胞具有液晶的特性。生命过程中的物质的物理状态很大程度就是液晶态。 所谓生物膜是指细胞本身及周边以及大多数细胞质内的组成,包括叶绿体、细胞核、线粒体、高尔基体、液体泡和内质网都被一层“轨道”结构的膜所包裹,这种膜统称为生物膜。生物膜的主要成分是类脂化合物,其中磷脂占重要部分。磷脂分子是极性双亲分子,在水和油的界面上可以形成厚度约为一个分子长度的单层膜。在足够浓的水溶液中,两片单层面的疏水面可以合并形成厚度约为两个分子长度的双层膜。双层膜中的烃链有一定的排列有序性。

基本信息
   生物液晶膜的相变非常复杂,它的相变除与浓度变化有关外,还与温度变化有关。因此维持生物膜的正常状态,需要一定水的浓度和一定的温度。一旦水的浓度和温度偏离了正常所要求的状态,生物膜就不能维持正常的功能,从而使细胞以至生物体处于病态。
 
1 脂质液晶的结构
  生物膜脂质主要是磷脂,还有糖脂及胆固醇等。由于脂质(如磷脂)含有极性的头部和由两条烃链组成的非极性尾部,故称其为两性分子。这种两性结构特征即决定了它们在生物膜中的双分子层排列方式及与膜蛋白的结合方式,也能形成多形性的液晶结构。
  液晶既有液体的特征能流动,又有固体的特征保持一定程度的有序结构。生物膜主要是由磷脂参与形成的液晶。在含水环境中,磷脂分子为了尽量避免疏水的烃链与水接触,可通过不同的有序排列与组合方式形成各种形状的聚集体。这些磷脂分子不同的有序组合结构方式就称为液晶的相。如通过单分子或双分子层状排列方式形成的体系为层状液晶相,由磷脂分子聚集成的微团或圆柱状(六角相)体系为非层状液晶相。不管是哪一种液晶结构,磷脂的非极性尾部都避开水而伸向分子内部或空气一侧,极性的头部伸向液晶的表面与水接触。由此看出,维持膜脂质液晶结构的主要力是疏水力。
 
2 脂质液晶的自发闭合性及其功能
  在水溶液中,由磷脂分子聚合而成的双分子层状液晶,为了将自由边缘上暴露的非极性烃链也包埋在分子内部,而趋于形成一个封闭的微囊结构,这就是膜脂质液晶的自发闭合性。这种性质在细胞起源、细胞分裂以及内吞与外排过程中都有重要的作用。在原始细胞的形成过程中,膜脂质液晶的自发闭合性发挥了极为关键的作用。只有在一定条件下,原始的生物大分子(如RNA、DNA及蛋白质等)被自发闭合的脂质液晶所包围并形成封闭的双层膜结构,从而形成原始的细胞。因为双分子层状膜结构的内外表面都是亲水的,所以在含水环境中,生物膜既能稳定存在,也能借助于膜的透性吸收水,还能保持胞内含有适量的水。水是一切生命的源泉,是活细胞进行各种生命活动的必备条件。也正是由于生物膜的存在,才能将细胞的内外环境分隔开,使细胞与周围环境能进行物质交换与能量交换,同时也能维持胞内环境的相对稳定。由上述看出,膜脂质液晶的自发闭合性为生命细胞的产生、生存与进化提供了条件。
 
3 膜脂质液晶的流动性及功能
  生物膜的流动性包括膜脂质与膜蛋白的流动。在生理条件下,磷脂大多呈液晶态而表现出流动特征,而膜蛋白也能在膜的二维流体中作侧向移动。大量的研究结果表明,适当的膜流动性是其正常功能的基础。如细胞的内吞与外排都要通过膜的流动与自发闭合过程,使细胞膜内陷或者向外突出形成小囊,以帮助物质进入细胞或排出细胞,且能保持膜结构的完整。在细胞分裂过程中,还是通过膜物质的流动与自发闭合过程,使细胞膜内陷导致细胞变形而分裂,同时也能保证分裂的细胞具有相同的膜组分与完整的膜结构。通过研究还发现,质膜的流动性与细胞分裂之间具有内在联系,这种联系可能是以跨膜信息的产生和细胞骨架的活动为中介的。为了寻找不同类型的细胞质膜流动性与细胞分裂能力之间的关系,有人研究了正常淋巴细胞、肺腺癌、肺鳞癌细胞及结核细胞膜脂质的流动性,并据此提出了与膜质流动性相关的细胞分裂动力学模型。一般情况下,膜脂流动性大的细胞分裂得快,例如肿瘤细胞的分裂增殖;膜脂流动性小的细胞分裂就慢,而且不同种类的细胞有其特有的膜脂流动性值。这一模型对于鉴别细胞类型及其特性以及临床早期诊断癌细胞都有重要的理论及应用价值,不过也有些问题用该模型无法解释,尚有待于进一步研究。
  与细胞分裂相反的细胞融合过程与卵细胞受精、信号识别与转换等有密切关系。当两个细胞融合时,膜脂质与膜蛋白都能通过流动而混合在一起,成为一个融合的细胞。此外,广泛应用于遗传育种实验中的原生质体融合技术也是基于膜物质的流动而发展起来的。
  存在于细胞膜上的蛋白质,如载体蛋白、受体蛋白及酶蛋白等,往往需要变构效应或侧向移动发挥生物学功能,而膜脂质液晶的流动也是蛋白质变构效应和侧向移动的基础。腺苷酸环化酶是一种跨膜蛋白,它被激活后可催化细胞内的ATP转变成cAMP。当外源激素与膜上的相应受体结合后,会导致该受体的构象向有利于结合腺苷酸环化酶的形式发生转化。由于膜脂质的流动使结合有激素的受体能侧向移动。一旦它们同腺苷酸环化酶相遇而结合,就会引起腺苷酸环化酶构象的变化并使其活化,继而催化产生cAMP。再由cAMP作为第二信使调节细胞的代谢与分裂。
 
生物膜液晶
 
临床治疗
  在某些疾病的临床治疗过程中,许多化学合成或利用重组DNA技术制备的生物活性肽或蛋白质类药物,因缺乏口服实用性(肽类或蛋白质类药物易受人体消化道内的肽酶或蛋白酶水解而失去药效)或者易被迅速从血清中清除,致使其应用受到极大的限制。人们利用膜脂质的自发闭合性,把肽类或蛋白质类药物包裹在脂质体中而制备成药物脂质体。这种脂质体不但能保护其中药物的生物活性,而且能延长药物在体内的半衰期,同时还有持续释放药物的特点,从而发挥药物“微库”的作用。如果在药物脂质体的表面结合有抗肿瘤细胞特异抗原的抗体,那么这种脂质体只能与相应的肿瘤细胞结合,而不能与正常的组织细胞结合,因而这种药物脂质体具有特异性靶向载体的作用。这样就能提高抗肿瘤药物的特异性,当然也就降低了其对正常细胞的毒性。
 
生物学技术实验
  在遗传工程等分子生物学技术实验中,人们还能把脂质体作为生物大分子的载体,将DNA、RNA等导入受体细胞,以改变这些细胞的遗传特征。如把DNA或RNA包封于中性脂质体内,再经脂质体与细胞膜融合或细胞的内吞作用把DNA或RNA导入受体细胞内。脂质体能保护基因不被降解,免疫原性小,并且经表面修饰后,还有专一性导向靶细胞的功能。
 
生物流动
  生物膜能流动,可是膜上各部分的流动是不均匀的,其原因是脂质双层上的磷脂与蛋白质并不是对称而均匀分布的,磷脂酰胆碱(PC)及鞘磷脂(SM)一般在脂双层的外层,磷脂酰丝氨酸(PS)和磷脂酰乙醇胺(PE)大多数在内层。膜脂双层的不对称性与细胞识别、内吞与外排、凝血及某些疾病,如血栓、自身免疫病等有密切关系。巨噬细胞表面有PS的特异受体,而PS处于脂双层的内层,就能避免巨噬细胞的识别与吞噬。现已发现肿瘤细胞、老化细胞、凋亡细胞都有PS外翻的变化,但PS外翻又能引质膜的局部产主突起或形成微囊而脱落。
 
物态变化
  由于各种磷脂的相变温度(磷脂由流动的液晶态变为类似胶态的温度)不同,再加之蛋白质与磷脂的作用,故在一定条件下,有的膜脂质为流动的液晶态,有的则为凝胶态,致使膜中各部分的流动性不尽相同。因此,可以把细胞膜视为具有不同流动性的微区相间隔的动态整体结构,而各微区的不同流动特点正是该部位的膜物质表现正常功能所需要的微环境条件。由此说明,生物膜的结构、特点及功能是微观上不均一与宏观整体上统一的对立统一体系。正是这种体系才能使生物膜具有复杂多变的功能,才能使细胞在一定条件下适应环境并维持生命活动。
 
液晶相变与癌

    最近对癌症病因的探索已从细胞水平深入到分子水平,并且在癌细胞的生物膜变研究中取得进展,发现了细胞膜癌变的物理机制与生物膜从液晶态转变为液态密切相关.正常细胞膜处于液晶态,癌细胞的生物膜发生了从液晶向各向同性的相变从而使膜分子的排列无序化,细胞膜的光滑特性也在此时转变为凹凸不平的毛茸状态,使细胞间的吸附作用减弱,从而破坏了细胞间接触抑制的调节机能。 
 
Liquid Crystals Battle Cancer and Other Diseases
Thursday, November 29, 2007 - Einat Rotman
Liquid Crystals Battle Cancer and Other Diseases
In collaboration between Kent State University, Summa Health System and IC-MedTech, an innovative liquid crystal technology has been developed. The technology offers the promise of safer, more effective drugs for the treatment of cancer and of many other diseases.
Liquid crystals are substances that flow like liquids but maintain some of the ordered structure characteristics of crystalline solids. Although they are best known for their application in displays, liquid crystals are also an essential part of all life forms. Lyotropic liquid crystals are essential organic substances, DNA, lipids of cellular membranes, and proteins are some examples of well known liquid crystals.

Kent State University, Summa Health System and IC-MedTech have developed a new paradigm in drug discovery based on the pharmacologic properties of Liquid Crystal Pharmaceuticals (LCPs). LCPs are a unique class of lyotropic liquid crystals that represent novel drug candidates for the treatment of a wide range of diseases. Representatives of this research project recently filed applications for two new patents: one for a new LCP-based anti-tumor drug called Tolecine™ and another for a formulation that combines Tolecine and another LCP, Apatone.

Tolecine is a new pre-clinical anti-tumor LCP that also has antiviral and antibacterial applications. It is tumor-cell selective and exhibits a strong anti-neoplastic activity (it counteracts abnormal proliferation of cells in a tissue or organ). In addition, it has been shown to be more effective than the current standard of care for herpes.

 Atomic Force Microscope image of nanostructured lyotropic liquid crystal (Credit: Liquid Crystal Institute, Kent State University
Atomic Force Microscope image of
nanostructured lyotropic liquid crystal
(Credit: Liquid Crystal Institute,
Kent State University)
Apatone is a clinical phase investigational new drug for late-stage prostate cancer. It is currently under consideration for clinical study for potential applications such as augmentation of chemotherapy to allow lower, less toxic doses of common chemotherapeutic agents. Apatone is made from two non-toxic compounds, a liquid crystal compound and a sugar, that selectively bio-concentrate within cancer cells and produce a free radical. Formation of the strong, short lived free radical is a concentration driven intracellular reaction and therefore only takes place in cells with sufficient sugar concentrations (such as cancer cells). The reaction results in  oxidative stress that weakens the targeted cells from within. It is carried out quickly only within the cancer cells, with no toxic reaction by-products that might harm adjacent healthy cells.

Unlike other chemotherapy drugs, Tolecine and Apatone have low toxicity and do not target dividing cells. Instead, they are activated by inflammation that occurs in and around tumor cells, sparing healthy cells. Innovative, low-toxicity drugs such as Tolecine and Apatone provide new hope in the battle against cancer and other diseases. “LCPs are an untapped frontier from which many new, exciting treatments are now emerging”, says Dr. Chun-che Tsai, Kent State Professor of Chemistry, who created the new drugs with his colleagues.

Other attempts to develop targeted cancer-treatment strategies covered by TFOT include blockade of B-cells' proliferation in Leukemia, killing of dividing cells without harming the non-dividing cells using electrical fields, and killing lone cancer cells using alpha-particles' radiation.

Further information on Liquid Crystal Pharmaceuticals™, Tolecine and Apatone is available on Kent State University's Liquid Crystal Institute website and on IC-MedTech Inc. website.

http://thefutureofthings.com/news/1058/liquid-crystals-battle-cancer-and-other-diseases.html

 

Developing liquid crystal pharmaceuticals to fight cancer, other diseases
Submitted by harminka on 2007-09-07
The American Cancer Society estimates that nearly 1.5 million new cases of cancer will be diagnosed this year. This crisis has caused the National Cancer Institute to establish a goal of eliminating suffering and death due to cancer by the year 2015.

Kent State University, Summa Health System and IC-MedTech Inc. have taken steps toward that goal. Their collaborative efforts have yielded an innovative liquid crystal technology that offers the promise of new drugs which may more effectively manage cancer and other diseases.

Dr. Chun-che Tsai, Kent State professor of chemistry; Dr. Jim Jamison, manager of Urology, Obstetrics and Gynecology Core Basic Research Laboratory for Summa Health System; and Mr. Tom Miller, president of IC-MedTech Inc., a California-based biotechnology company, have developed a new paradigm in drug discovery based on the pharmacologic properties of liquid crystals called Liquid Crystal Pharmaceuticals™ or LCPs.

Recently, the team gathered at Kent State University’s Office of Technology Transfer to file applications for two new patents: one for a new LCP-based anti-tumor drug called Tolecine™ and another for a formulation that combines Tolecine™ and another LCP, Apatone®.

“The path-breaking discoveries of Dr. Tsai and his colleagues offer compelling proof of the value of university research and the enormous good that can come from collaborations between universities and the private sector,” says Kent State President Lester A. Lefton. “As Kent State researchers tackle cancer and a host of other real-world ills and issues, they are bringing their leading-edge knowledge and creativity to our students and playing a significant role in economic development.”

Though best known for their use in laptops, televisions and cell phones, liquid crystals also include families of organic substances that are essential for all life called lyotropic liquid crystals. Examples of lyotropic liquid crystals include DNA, proteins and cholesterol. LCPs are a unique class of lyotropic liquid crystals that represent novel drug candidates for the treatment of a wide range of diseases.

“Mother nature is the ultimate chemist,” says Tsai. “Although we use creative and sophisticated computer modeling techniques to screen for our candidate compounds, I’m always amazed at how nature puts it all together.”

The most recent research involving LCPs has yielded a new investigational anti-tumor drug called Tolecine™, a compound that also has antiviral and antibacterial applications. Created by Tsai, it has been shown to be even more effective than the current standard of care for herpes.

The team’s second patent application involves a formulation that combines Tolecine™ and another LCP, Apatone®, which attacks cancer cells via multiple pathways to offer improved efficacy. Apatone® has been successfully tested in more than 30 human tumor cell lines at Summa and in a Phase I/IIa clinical trial, which demonstrated a delaying effect in the progression of end-stage cancer patients. In addition, the FDA granted Apatone® orphan-drug status for the treatment of metastatic, or locally advanced, inoperable bladder cancer in August 2007.

Unlike other chemotherapy drugs, TolecineTM and Apatone®have low toxicity and do not target dividing cells. Instead, they are activated by inflammation that occurs in and around tumor cells, sparing healthy cells. “We want to kill cancer cells specifically without killing surrounding tissues,” says Jamison.

Innovative, low-toxicity drugs such as Tolecine™ and Apatone®provide new hope in the battle against cancer and other diseases in the next few years. “Research on LCPs provides a solid scientific foundation for generations of new drugs,” says Miller. Adds Tsai: “LCPs are an untapped frontier from which many new, exciting treatments are now emerging.” -Kent State University

http://www.huliq.com/33407/developing-liquid-crystal-pharmaceuticals-to-fight-cancer-other-diseases

 

Liquid Crystals in Biological Systems DOI: 10.1080/15421406608083293    Gordon T. Stewartab   pages 563-580  Available online: 21 Mar 2007
Abstract

There are several good theoretical reasons why matter in the liquid crystalline state should play a part in the structure of living tissue.

Many naturally-occurring substances exhibit paracrystalline behavior.

The most complex and some of the most reactive forms, the so-called cholesteric, are mainly or exclusively of natural origin.

No other formation of organic molecules possesses a comparable pattern of ordered structure in a state of flow.

This is not to say that liquid crystals must, therefore, be involved in living processes. It simply means that theory would fit fact, if facts were available.


路过

雷人

握手

鲜花

鸡蛋

评论 (0 个评论)

facelist

你需要登录后才可以评论 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-5 11:04

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.