干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索

生态位法则(niche rules)

已有 1248 次阅读 2011-8-12 22:49 |关键词:俄罗斯 企业经营 大自然 培养基 草履虫

生态位法则

  生态位法则也称“格乌司原理”“价值链法则”。原指在大自然中,各种生物都有自己的“生态位”:亲缘关系接近的,具有同样生活习性的物种,不会在同一地方竞争同一生存空间。应用在企业经营上就是,同质产品或相似的服务,在同一市场区间竞争难以同时生存。

生态位法则的来源

  俄罗斯人格乌司,将一种叫双小核草履虫和一种叫大草履虫的生物,分别放在两个相同浓度的细菌培养基中,几天后,这两种生物的种群数量都呈s形曲线增长,然后,他又把它们放入同一环境中培养,并控制一定的食物。l6天后,双小核草履虫仍自由地活着,而大草履虫却已消逝得无影无踪。经过观察,并未发现两种虫子互相攻击的现象,两种虫子也未分泌有害物质。只是双小核草履虫在与大草履虫竞争同一食物时增长比较快,大草履虫被赶出了培养基。

  接着,格乌司又做了相反的一种试验,他把大草履虫与另一种袋状草履虫放在同一环境中进行培养,结果两者都能存活下来,并且达到一个稳定的平衡水平。这两种虫子虽然竞争同一食物,但袋状草履虫占用的是不被大草履虫所需要的那一部分食物。大自然中,凡存在者就有自己的“生态位”,亲缘关系接近的,具有同样生活习性的物种,不会在同一地方竞争同一生存空间。若同时在一个区域必有空间分割,即使弱者与强者共处于同一生存空间,但弱者仍然能够容易地生存,所以鹰击长空,鱼翔潜底,没有两种物种的生态位是完全相同的。在食物依赖上也完全不同,有吃肉的就必有吃草的,吃肉吃草的分时供应,狮子白天显威,老虎傍晚横行,狼深夜觅食。这是一种“生态位”现象。人们把格乌司的这种发现称为“格乌司原理”

生态位法则的启示

  生态位现象对所有生命现象而言是具有普遍性的一般原理,同样适用于人类,因为生物所具有的各种属性人类都具有。 每个人都必须找到适合自己的生态位,即根据自己的爱好、特长、经验、行业趋势、社会资源等,确定自己的位置。人们在总结成功与失败的经验时,往往喜欢从资金、产品、市场来寻找原因,很少有老板是从生态位的角度来寻找原因的。这里所说的“生态位”。包括两个方面,一是自己所处的生态环境,一是自己所需要的生态环境。所谓“生态位环境”,即自然环境和社会环境。自然环境为气候、食物、土壤和地形;社会环境为文化、观念、道德、政策等。生态环境影响着一个人的性格,性格又对人的创业有直接影响。

  同时, “生态位法则”,对我们今天研究企业的发展战略及竞争谋略也有着很大的作用。按格乌司原理,一个物种只有一个生态位,但并不排斥其他物种的侵占,如一山不容二虎,并不是说A山的老虎不能到B山,老虎饿了哪里都能去,不过去了就会发生一场生死搏斗,这种现象在商界叫市场竞争。企业的产品在刚开始进入某个特定市场时,往往没有竞争对手,形成原始生态位或竞争前生态位或虚生态位。但是,只要市场是开放的,均衡的,很快就会有其他竞争者大举进入该市场,形成生态位的部分重叠。如果市场容量极大,大家尚能暂时相安无事,但随着市场份额的相对缩小,竞争就会日趋激烈。企业无论大小强弱,都要像狮子与羚羊一样训练快速奔跑,否则你就会被吃掉。

  可以这么说,吃老鼠的猫即使成了老虎,充其量也只能吃狼吃狗,决不能吃狮子吞大象,这就是“生态位现象”。一个企业的成败的原因有很多,“生态位”应该是主要的原因之一,因为它要求的是人与自然、人与社会的和谐发展。

  好企业并不是一年能赚几个亿或几十个亿的企业,而是长盛不衰的企业。自然界检验一个物种成功的尺度,是看这个物种是否能延缓下去,而检验一个企业的成功尺度是看这个企业能否生存下来,能否长久生存下来。做企业不是百米冲刺,而是马拉松赛跑。衡量企业成功的标准不是强大,而是生存,能生存就是最好的企业,偏离自己的生态位去做强者的企业,非垮不可。世界上的好企业都是百年不衰的企业。如美国的通用电气公司(120年)、可口可乐公司(115年)、吉列安全剃刀公司(100年)、法国的人头马白兰地酒业公司(241年)等。而这些百年不衰的公司往往都是选准了自己的生态位。这些企业既是强者又是适者。强者与适者的结合,是对自己“生态位”的高度发挥。在动物界,老虎是强者,但因为人们的开发,老虎在慢性饥饿中减少,而被视为弱者的老鼠,人们虽然天天灭,然而还是到处都有,因为老鼠的生态位没有发生根本的变化,它可以避开老鼠药和人们的棍棒生存。因此,谁适应大自然创造的法则就可以生存下来,否则就灭亡。

http://wiki.mbalib.com/wiki/%E7%94%9F%E6%80%81%E4%BD%8D%E6%B3%95%E5%88%99

 

生态位理论及其在湿地植物种群研究中的应用
时间:2011-04-18 07:06:14  来源:  作者:

陈明华,刘以珍,赵安娜

(南昌大学生命科学与食品工程学院,江西南昌 330031

摘要:生态位理论(niche theory)在湿地生态学中的关于湿地植物生态适宜性、湿地植物种内或种间竞争、湿地植被恢复、湿地群落演替动态研究已取得一定进展。文章对生态位理论的产生、发展过程及其在湿地植物种群研究中的应用作综合评述。

关键词:生态位理论;湿地植物;种群

中图分类号:Q948 文献标识码:A 文章编号:

 

生态位(niche)这一概念是现代生态学领域中一个极为重要的概念,是现代生态学最重要的基础理论之一,受到前所未有的关注,生态位的研究已经渗透到动物生态学、森林生态学、城市生态学、生态农业等方面。目前,生态位理论已广泛地应用于物种间关系、生物多样性、群落结构及演替、种群进化和生物与环境关系等研究方面,并取得了丰硕的成果。生态位理论在鸟类生态的研究中应用的实例较多,在植物生态学研究中的应用则较少,主要集中在森林生态学、草原生态学,在湿地生态学研究中偏少。近年用生态位理论来研究湿地植物种群生态位已成为湿地生态科学的热点内容之一。

1 生态位研究进展

1894年,密执安大学的Streere观察了在菲律宾各岛的鸟类分离而生活的生态位现象,没有做更加详细的解释;1910年,Johnson最早用了niche术语:同一地区的不同物种可以占据环境中的不同生态位Johnson没有给出生态位定义且未形成一个完整的概念;191719241928J.Grinnell在研究加利福尼亚长尾鸣禽的生态位关系时,使用生态位术语并首先给以定义,他将生态位定义为某一物种在群落种所处的位置和所发挥的功能作用,实质是一个物种所占有的环境地位,即微环境(microenvironment,后来研究者称它为空间生态位(space niche)1927年,C.S. Elton,给生态位下的定义是一个动物的生态位表明它在生物环境中的地位及其与食物和天敌的关系,后来研究者称它为营养生态位(trophic niche)或功能生态位(functional niche)1957年,G.E.Hutchinson提出生态位的n维超体积(n-dimensional hyper-volume)模式,他认为生态位是每种生物对环境变量(温度、营养、湿度等)的选择范围,因为环境变量是多维的,称为超体积,后来研究者称为超体积生态位(hyper-volume niche)Odum(1959)Whittaker(1973)Colinvaux(1986)、张光明、王刚(1984)等从不同的角度分别给出生态位的定义。目前,对生态位下定义研究者很多,但最具代表性的当推C.S.EltonJ.GrinnellG.E.Hutchinson三人,后来研究者分别称他们所下定义为空间生态位功能生态位多维超体积生态位

2 生态位理论在湿地植物种群研究中的应用

2.1 在湿地植物种群的生态适宜性研究中的应用

物种生态位宽度的宽窄决定于物种对环境资源的适应能力和利用,环境资源的变化与生态位宽度的变化密切相关,环境改变引起物种对资源的利用和对环境适应性的变化。对湿地植物生态位宽度和生态位重叠值进行测定值较好地反映了湿地植物的生态适应性。水、氮、磷等矿质元素对湿地植物的分布生长造成影响,当这些元素发生改变时,湿地植物的分布生长也会发生改变。土壤水分能够分配和调节水资源、营养元素以及氧气的浓度的有效性,两典型样地土壤水分的差异影响湿地植物对营养元素和水分的有效利用,引起湿地植物对水、氮、磷等矿质元素环境的生长适应性产生差异。湿地土壤的营养及水分因素是影响湿地植物生长的重要生态因子,影响着湿地植物的生长和分布,以及湿地植物物种对环境生态位适应的程度。如果湿地植物受到这些生态因子的长期影响,那么这些湿地植物就会表现出不同的生态适应特征。水、氮、磷等环境条件的改变降低了物种的生存适合度,可使物种对资源利用分化或生态位发生移动,从而使物种间的生态位重叠程度降低,在环境资源范围变窄时,广布种往往扩展其生态位,而特化种一般收缩其生态位宽度。

2.2 在湿地植物种群种内或种间竞争研究中的应用

种群竞争与生态位重叠的关系是一个及其复杂的问题。生态位宽度较窄的湿地植物种群与其它湿地植物种群的生态位重叠较小,生态位宽度较宽的湿地植物种群利用资源能力较强,分布较广,与其它湿地植物种群间的生态位重叠较大,但具有较窄生态位宽度的湿地植物种群之间的生态位重叠并不一定低,具有较宽生态位宽度的湿地植物种群之间的生态位重叠并不一定高。当不同湿地植物使用同一环境资源资源维度时,湿地植物种间发生生态位重叠,一般在环境容量饱和的情况会出现生态位重叠的现象,从而会导致种间竞争排斥,最终造成生态位相似的湿地植物生态位位移或置换特征而生存或导致部分死亡。生态位重叠值大小能够说明湿地植物种群间在环境资源维度上分布的重叠程度,也能说明湿地植物种群在环境资源维度上的使用情况。具有近相似环境资源维度要求的湿地植物种群或生态学特征相似湿地植物种群,在湿地植物群落中生态位重叠较宽。

2.3 在湿地植被恢复研究中的应用

在湿地植被恢复时应该要考虑各个种群之间的湿地植物种群的生态位宽度、湿地植物种群的生态位重叠和生态位相似性比例,以及湿地植物种群之间是否有利用性竞争的生态关系,如果是竞争性的生态关系,那么至少要求将如土壤盐分的某一资源维度的不要重叠。在湿地植物种群修复时,应充分研究湿地植物种群的生态特征,避免原有湿地植物与引入湿地植物之间产生较大的生态位重叠,防止湿地植物种群间出现激烈竞争。基础生态位窄的湿地植物种群适宜于生长在湿地植物群落结构复杂的生境、资源丰富中,基础生态位宽的湿地植物种群能在严酷的生境中生存。为加快湿地植被的演替,则应合理地选择,引入基础生态位较窄的种群,因此,在滩涂地上恢复湿地植被,一般应选择基础生态位较宽的湿地植物种群。

2.4 在湿地群落演替动态中的应用

湿地植物群落是对资源环境梯度的集合现象,随资源环境梯度变化而湿地植物群落自身的生态特性也变化,随资源环境梯度变化在群落演替中表现的更为突出。湿地植物群落演替过程中,可依据湿地植物种群生态位宽度宽窄、重叠程度高低及其动态变化,确定湿地植物泛化种和特化种,以及湿地植物在不同演替阶段内的变化。湿地植物群落包括建群种和优势种的数量功能变化、湿地植物群落的种类以及资源环境梯度演化等。

3 结语

在湿地植物种群研究中生态位理论有重要而广泛的应用,依据对湿地植物种群之间生态位宽度及生态位重叠的计算,能够更深入地认识湿地植物种间或种群内的竞争,更深入理解植物种群在群落中的地位和作用也提供了科学依据。在解释湿地群落演替动态机理生态位理论提供了一个重要方法。

参考文献

[1] 孙鸿良,齐哗,胡涛.生态位理论及其在生态农业建设中的拓广与应用[J].农业现代化研究,1987(04).

[2] 袁志忠,何丙辉.生态位理论及其在植物种群研究中的应用[J].福建林业科技,2004(02).

[3] 李自珍,赵松岭,张鹏云.生态位适宜度理论及其在作物生长系统中的应用[J].兰州大学学报(自然科学版),1993(04).

[4] 王子迎,吴芳芳,檀根甲.生态位理论及其在植物病害研究中的应用前景(综述)[J].安徽农业大学学报(自然科学版),2000(03).

[5] 林开敏,郭玉硕.生态位理论及其应用研究进展[J].福建林学院学报,2001(03).

[6] 李鑫.生态位理论研究进展《重庆工商大学学报(自然科学版)2008(03).

[7] 黄梓良,胡永颜.不同更新方式对林地植物群落物种多样性的影响[J].亚热带植物科学,2001(02).

[8] 王子迎,吴芳芳,檀根甲.生态位理论及其在植物病害研究中的应用前景(综述)[J].安徽农业大学学报(自然科学版),2000(03).

[9] 朱春全.生态位理论及其在森林生态学研究中的应用[J].生态学杂志,1993(04).

作者简介:陈明华 (1978-),男,南昌大学生命科学与食品工程学院硕士研究生,研究方向:湿地生态学。

http://www.jilinnongye.com/jilinnongyeCban/yuanlinshengtai/2011-04-18/3974.html

 

Vacant niche
From Wikipedia, the free encyclopedia
Jump to: navigation, search

The issue of what exactly defines a vacant niche and whether they exist in ecosystems is controversial. The subject is intimately tied into a much broader debate on whether ecosystems can reach equilibrium, where they could theoretically become maximally saturated with species. Given that saturation is a measure of the number of species per resource axis per ecosystem, the question becomes: is it useful to define unused resource clusters as niche 'vacancies' or not?

Contents[hide]
[edit] History of the concept
Introduced species, such as the Common Brushtail Possum, are often free of many of their normal parasites.

Whether vacant niches are permissible has been both confirmed and denied as the definition of a niche has changed over time. Within the pre-Hutchinsonian niche frameworks of Grinnell (1917)[1] and Elton (1927)[2] vacant niches were allowable. In the framework of Grinnell, the species niche was largely equivalent to its habitat, such that a niche vacancy could be looked upon as a habitat vacancy. The Eltonian framework considered the niche to be equivalent to a species position in a trophic web, or food chain, and in this respect there is always going to be a vacant niche at the top predator level. Whether this position gets filled depends upon the ecological efficiency of the species filling it however.

The Hutchinsonian niche framework, on the other hand, directly precludes the possibility of there being vacant niches. Hutchinson defined the niche as an n-dimensional hyper-volume whose dimensions correspond to resource gradients over which species are distributed in a unimodal fashion. In this we see that the operational definition of his niche rests on the fact that a species is needed in order to rationally define a niche in the first place. This fact didn't stop Hutchinson from making statements inconsistent with this such as: “The question raised by cases like this is whether the three Nilghiri Corixinae fill all the available niches...or whether there are really empty niches.. . .The rapid spread of introduced species often gives evidence of empty niches, but such rapid spread in many instances has taken place in disturbed areas.” Hutchinson (1957).[3] The concept of the “vacant” or “empty niche” has been used regularly in the scientific literature. Some of the many examples are Elton (1958, pp. 135-136),[4] Rohde (1977, 1979, 1980)[5][6][7] Lawton (1984),[8] Price (1984),[9] Compton et al. (1989),[10] Begon et al. (1990)[11] and Cornell (1999).[12] Further examples, some of them in great detail, are discussed in Rohde (2005b).[13]

[edit] Definitions

Despite the large scale currency that the term has gained as a "catch all" in scientific literature, surprisingly little effort has been made to come up with a coherent definition. The most notable attempt is that of the ecologist K. Rohde, who has suggested that a vacant niche can be defined as the possibility that in ecosystems or habitats more species could exist than are present at a particular point in time, because many possibilities are not used by potentially existing species (Rohde 2005b).[13] For a systematic review see: (Lekevičius, 2009). [14]

[edit] Potential causes of vacant niches

Vacant niches could potentially have several causes.

• Radical disturbances in a habitat: For example, droughts or forest fires can destroy a flora and fauna partially or completely. However, in such cases species suitable for the habitat usually survive in the neighbourhood and colonize the vacated niches, leading to a relatively fast re-establishment of the original conditions.

• Radical and long-lasting changes in the environment: such as ice ages.

• Evolutionary contingencies: suitable species did not evolve for usually unknown reasons, or niche segregation between pre-existing species created a novel niche vacancy.

[edit] Demonstration of vacant niches
Studies of Pteridium aquilinum provide evidence of vacant niches.

Vacant niches can best be demonstrated by considering the spatial component of niches in simple habitats. For example, Lawton and collaborators compared the insect fauna of the bracken Pteridium aquilinum, a widely distributed species, in different habitats and geographical regions and found vastly differing numbers of insect species. They concluded that many niches remain vacant (e.g., Lawton 1984).

Rohde and collaborators have shown that the number of ectoparasitic species on the gills of different species of marine fishes varies from 0 to about 30, even when fish of similar size and from similar habitats are compared. Assuming that the host species with the largest number of parasite species has the largest possible number of parasite species, only about 16% of all niches are occupied. However, the maximum may well be greater, since the possibility cannot be excluded that even on fish with a rich parasite fauna, more species could be accommodated (recent review in Rohde 2005b).[13] Using similar reasoning, Walker and Valentine (1984)[15] estimated that 12-54% of niches for marine invertebrates are empty.

The ground breaking theoretical investigations of Kauffman (1993)[16] and Wolfram (2002)[17] also suggest the existence of a vast number of vacant niches. Using different approaches, both have shown that species rarely if ever reach global adaptive optima. Rather, they get trapped in local optima from which they cannot escape, i.e., they are not perfectly adapted. As the number of potential local optima is almost infinite, the niche space is largely unsaturated and species have little opportunity for interspecific competition. Kauffman (p. 19) writes: “...many conceivable useful phenotypes do not exist” and: (p. 218) “Landscapes are rugged and multipeaked. Adaptive processes typically become trapped on such optima”.

The packing rules of Ritchie and Olff (1999)[18] can be used as a measure of the filling of niche space. They apply to savanna plants and large herbivorous mammals, but not to all the parasite species examined so far. It seems likely that they do not apply to most animal groups. In other words, most species are not densely packed: many niches remain empty (Rohde 2001).[19]

That niche space may not be saturated is also shown by introduced pest species. Such species lose, almost without exception, all or many of their parasites (Torchin and Kuris 2005).[20] Species that could occupy the vacant niches either do not exist or, if they exist, cannot adapt to these niches.

The diversity of marine benthos, i.e. the organisms living near the seabed, though interrupted by some collapses and plateaus has increased from the Cambrian to the Recent. Furthermore there is no evidence to suggest that saturation has been reached (Jablonski 1999).[21]

[edit] Consequences of the nonsaturation of niche space

The view that niche space is largely or completely saturated with species is widespread. It is thought that new species are accommodated mainly by subdivision of niches occupied by previously existing species, although an increase in diversity by colonization of large empty living spaces (such as land in the geologic past) or by the formation of new baupläne also occurs. It is also recognized that many populations never completely reach a climax state (i.e., they may come close to an equilibrium but never quite reach it). However, altogether the view prevails that individuals and species are densely packed and that interspecific competition is of paramount significance. According to this view, nonequilibria are generally caused by environmental disturbances.

However, many recent studies (above and Rohde 2005a,b)[13][22] support the view that niche space is largely unsaturated, i.e. that numerous vacant niches exist. As a consequence, competition between species is not as important as usually assumed. Nonequilibria are caused not only by environmental disturbances, but are widespread because of nonsaturation of niche space. Newly evolved species are absorbed into empty niche space, that is, niches occupied by existing species do not necessarily have to shrink.

[edit] Relative frequency of vacant niches in various groups of animals and plants

Available evidence suggests that vacant niches are more common in some groups than in others. Using SES values (standardized effect sizes) for various groups, which can be used as approximate predictors of the filling of niche space, Gotelli and Rohde (2002)[23] have shown that SES values are high for large and vagile species or for those which occur in large population densities, and that they are low for animal species which occur in small population densities and/or are of small body size and have little vagility. In other words, more vacant niches can be expected for the latter.

[edit] Criticisms of the concept

The concept of vacant niche is not accepted by all. The reason given is that a niche is a property of a species; therefore a niche does not exist if no species is present. In other words, the term is thought to be “illogical”. However, some authors who have contributed most to the formulation of the modern niche concept (Hutchinson, Elton) apparently saw no difficulties in using the term. If a niche is defined as the interrelationship of a species with all the biotic and abiotic factors affecting it, there is no reason not to admit the possibility of additional potential interrelationships. So, it seems logical to refer to vacant niches. (see also ecological niche.)

Furthermore, it seems that authors most critical of the concept "vacant niche" really are critical of the view that niche space is largely empty and can easily absorb additional species. They instead adhere to the view that communities are usually in equilibrium (or at least close to it), resulting in a continual strong competition for resources. But many recent studies, some empirical, some theoretical, have provided support for the alternate view that nonequilibrium conditions are widespread (see above and the recent review in Rohde 2005b).[13]

In the German literature, an alternate term for vacant niches has found some acceptance. It is that of “freie ökologische Lizens” (free ecological license) (Sudhaus und Rehfeld 1992).[24] It has been argued that this conceptualization has a disadvantage in that it does not convey immediately and easily what is meant, furthermore the concept does not correspond exactly to the term vacant niche. The usefulness of a term should be assessed on the basis of its understandability and on it's capacity to promote future research. The term vacant niche appears to fulfill these requirements.[13]

[edit] See also [edit] References
  1. ^ Grinnell, J. (1917). The niche relationship of the California Thrasher. Auk, 34, 427-433.
  2. ^ Elton, C. (1927). Animal Ecology. Sidgwick and Jackson, London.
  3. ^ Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology 22, 415-427.
  4. ^ Elton, C.S. 1958. The ecology of invasions by animals and plants. Chapman and Hall, London, UK. 181 pp. ).
  5. ^ Rohde, K. (1977). A non-competitive mechanism responsible for restricting niches. Zoologischer Anzeiger 199, 164-172.
  6. ^ Rohde, K. (1979). A critical evaluation of intrinsic and extrinsic factord responsible for restricting niches. American Naturalist 114, 648-671.
  7. ^ Rohde, K. (1980 ). Warum sind ökologische Nischen begrenzt? Zwischenartlicher Antagonismus oder innerartlicher Zusammenhalt?. Naturwissenschaftliche Rundschau, 33, 98-102. ,
  8. ^ Lawton, J.H. (1984). Non-competitive populations, non-convergent communities, and vacant niches: the herbivores of bracken. In: Strong, D.R. Jr., Simberloff, D., Abele, L.G. and Thistle, A.B. eds. Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, N.J., pp. 67-101.
  9. ^ Price, P.W. (1984). Alternative paradigms in community ecology. In: Price, P.W., Slobodchikoff, C.N. and Gaud, W.S. eds. (1984). A new ecology. Novel approaches to interactive systems. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore, pp.353-383.
  10. ^ Compton, S.G., Lawton, J.H. and Rashbrook, V.K. (1989). Regional diversity, local community structure and vacant niches: the herbivorous arthropods of bracken in South Africa. Ecological Entomology 14, 365-373.
  11. ^ Begon, M.J., Harper, L. and Townsend, C.R. (1990). Ecology: Individuals, populations and communities. 2.ed. Blackwell Scientific, Boston.
  12. ^ Cornell, H.V. (1999). Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Ecoscience 6, 303-315.
  13. ^ a b c d e f K. Rohde: Nonequilibrium Ecology, Cambridge University Press, Cambridge, 2005b, 223 pp. auf http://www.cambridge.org/9780521674553
  14. ^ Lekevičius , E. (2009). Vacant niches in nature, ecology, and evolutionary theory: a mini-review. Ekologija 55, 165-174.
  15. ^ Walker, T.D. und Valentine, J.W.(1984). Equilibrium models of evolutionary diversity and the number of empty niches. American Naturalist 124, 887-899.
  16. ^ Kauffman, S.A. (1993). The origins of order. Self-organization and selection in evolution. Oxford University Press, New York Oxford.
  17. ^ Wolfram, S. (2002). A new kind of science. Wolfram Media Inc. Champaign, Il.
  18. ^ Ritchie, M. and Olff, H. (1999). Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557-562.
  19. ^ Rohde, K. (2001). Spatial scaling laws may not apply to most animal species. Oikos 93, 499-503.
  20. ^ Torchin, M.E. and Kuris, A.M. (2005). Introduced parasites. In: Rohde, K. (Ed.) Marine Parasitology. CSIRO Publishing Melbourne und CABI Wallingford, Oxon., pp. 358-366.
  21. ^ D.Jablonski: The future of the fossil record, Science 284, 2114-2116, 1999.
  22. ^ Rohde, K. (2005a) Eine neue Ökologie. Aktuelle Probleme der evolutionären Ökologie. Naturwissenschaftliche Rundschau, 58, 420-426.
  23. ^ Gotelli, N.J. and Rohde, K. (2002). Co-occurrence of ectoparasites of marine fishes: null-model analysis. Ecology Letters 5, 86-94.
  24. ^ Sudhaus, W. und Rehfeld, K. Einführung in die Phylogenetik und Systematik. Gustav Fischer Verlag Jena.

http://en.wikipedia.org/wiki/Vacant_niche


路过

雷人

握手

鲜花

鸡蛋

评论 (0 个评论)

facelist

你需要登录后才可以评论 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-5 09:17

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.