干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 13726|回复: 0
go

Nature:微生物“暗物质”的惊鸿一瞥 [复制链接]

Rank: 3Rank: 3

积分
876 
威望
876  
包包
6281  

金话筒 优秀会员 帅哥研究员 积极份子 小小研究员

楼主
发表于 2013-7-17 09:42 |只看该作者 |正序浏览 |打印
Nature:微生物“暗物质”的惊鸿一瞥, W4 F  L  K* N4 b
2013-07-15 来源:ebiotrade 作者:koo
! f' d0 L: n0 }: s& r7 ]$ t$ t9 o1 }+ P& l
利用新兴的单细胞 DNA 测序技术,科学家们窥探了过去难以开展研究的一些微生物,揭示了生命树的不同分支之间意想不到的一些联系。
0 a1 ^4 p! ^) d7 j在美国能源部联合基因组研究所(Department of Energy Joint Genome Institute)微生物学家 Tanja Woyke 的领导下,研究人员利用单细胞测序读取了来自深海热泉和地下金矿等 9 个不同环境,201 种细菌及古细菌细胞的基因组。这些生物体过去从未在实验室中进行过培养或是测序。研究结果发表在 7 月 14 日的《自然》(Nature)杂志上。+ b, h% s+ o" o  o9 ^$ p: }
科罗拉多大学博尔德分校微生物学家 Norman Pace 说:“这是一篇令人惊叹的研究论文,它代表了微生物学的全新水平。”3 y: l# v( y3 D  h( c- ~: g) W$ v
利用单细胞测序,科学家通过将来自单个细胞的 DNA 扩增十亿倍,破译了它的基因组,从而为研究从前未知的“微生物暗物质”开辟了一条新途径。研究人员一直以来是通过利用诸如宏基因组学研究等方法来发现一些生物体,探讨生活在共同环境中的微生物体群,它们通常难于或不可能在实验室中进行培养。
7 m: [! c6 |$ {* O) [) Q2 Q' @Woyke 和研究小组通过选择高度多样化的微生物,测序了它们部分的基因组(范围从低于 10% 到高于 90%,这取决于细胞),来尝试探索了这些暗物质。通过序列阐明了这些微生物相互之间,以及与其他物种之间的关系。
' c/ ]7 c9 s* c& ?这项新研究揭示,生命王国之间的一些常规界限并不像一直以来认为的那样严格精密。例如,研究人员提出,一种细菌谱系,利用了从前认为只存在于古细菌中的酶,合成了嘌呤碱基。同时,研究中测序的3种古细菌细胞包含有 sigma 因子,过去认为这些启动 RNA 转录的因子只存在于细菌中。/ r5 _8 F$ v: N! x* _- |. T) j6 L) \
研究人员还发现,一种细菌“重新编码” 了称之为蛋白石(opal)终止密码子的UGA。在几乎所有其他生物体中,这一核苷酸序列代表的是终止将 RNA 翻译为蛋白质。然而在这一生物体中,它告知细胞生成了甘氨酸。研究人员提出将这一细菌置于称作为 Gracilibacteria 的一个新的细菌门。
2 W; ^# }: B9 l" o此外,研究人员还在另一种细菌中也发现了类似的重编码,表明了生命的密码有可能比科学家们一直猜想的更为灵活。
) }. [- C( _: u# D7 ~+ {( [, B2 [" Z“想想看我们在这 201 个基因组中发现的所有新奇事物,结果是非常惊人的,因为我们只看到的还只是这一巨大多样性的一小部分,” Woyke 说。4 M/ W& I% e) [2 O* s, ]- x  J
研究人员说,他们的研究工作可以帮助丰富生命树上的枝叶。 Woyke 和同事们估计,尽管目前数百万的细菌物种被分成为了 60 多个主要的细菌门,88% 的培养微生物却只属于四个细菌门。* C; F* B5 t, u
他们全面深入的研究还提供了关于微生物关系的一些新信息,对来自从前宏基因组项目的 3.4 亿序列读值进行了更好地分类。他们预计,大约 1.6 万个需要测序的细胞覆盖了世界上一半的未研究微生物谱系。加州 J. Craig Venter 研究所微生物学家 Jeffrey McLean 说,因此该领域还有漫长的道路要走。
% P5 m/ Y# O/ s% m; Y. N6 o7 p“这项工作不仅突现了单细胞基因组学的能力,同时也表明了我们还需要付诸更多的努力来弥补地球上微生物多样性这一巨大的知识缺口,” McLean 说。
2 w& J) U8 W: O& W原文检索:
7 Q" c8 Z4 Z1 d  j7 T: S- ?Erika Check Hayden. Researchers glimpse microbial 'dark matter'. Nature, 14 July 2013; doi:10.1038/nature.2013.13361
3 F8 P8 S' r8 G* Q% J) N( b( DChristian Rinke, Patrick Schwientek, Alexander Sczyrba, Natalia N. Ivanova, Iain J. Anderson, Jan-Fang Cheng, Aaron Darling, Stephanie Malfatti, Brandon K. Swan, Esther A. Gies, Jeremy A. Dodsworth, Brian P. Hedlund, George Tsiamis, Stefan M. Sievert, Wen-Tso Liu, Jonathan A. Eisen, Steven J. Hallam, Nikos C. Kyrpides, Ramunas Stepanauskas, Edward M. Rubin, Philip Hugenholtz& Tanja Woyke. Insights into the phylogeny and coding potential of microbial dark matter. Nature, 14 July 2013; doi:10.1038/nature12352
! D# L$ T! H0 c/ Y' o. ~9 V3 J1 n2 \1 X$ R2 ]3 O6 ?
原文:
' a) _: F4 M5 p2 t2 D2 i
3 n# N' J- t6 l附件:
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 2 + 10 极好资料

总评分: 威望 + 2  包包 + 10   查看全部评分

‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-9 02:11

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.