干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
楼主: hualin840518
go

[已解决求助] Developmental Biology, Eighth Edition   [复制链接]

头像被屏蔽

禁止访问

积分
10 
威望
10  
包包
1  
11
发表于 2009-9-25 02:27 |只看该作者
提示: 作者被禁止或删除 内容自动屏蔽
头像被屏蔽

禁止访问

积分
10 
威望
10  
包包
1  
12
发表于 2009-9-25 02:27 |只看该作者
提示: 作者被禁止或删除 内容自动屏蔽

Rank: 4

积分
1039 
威望
1039  
包包
3260  

小小研究员 优秀会员 博览群书

13
发表于 2009-9-25 07:32 |只看该作者
xiexie

Rank: 3Rank: 3

积分
517 
威望
517  
包包
1299  

金话筒 优秀会员

14
发表于 2009-11-18 22:16 |只看该作者
干细胞之家微信公众号
没有,也想看

Rank: 7Rank: 7Rank: 7

积分
1234 
威望
1234  
包包
1908  

优秀版主

15
发表于 2009-11-19 00:18 |只看该作者
http://8e.devbio.com/
& ~8 O4 X% w& r* Q. m& a  B6 F' c网上的电子版的不知道你用得着不?

Rank: 3Rank: 3

积分
683 
威望
683  
包包
1343  

优秀会员 热心会员 帅哥研究员 小小研究员

16
发表于 2010-3-4 21:05 |只看该作者
回复 1# hualin840518 ; ]8 \# U0 o, F+ M5 E1 x) ?
是这个么?
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 5 + 10 极好资料

总评分: 威望 + 5  包包 + 10   查看全部评分

Rank: 7Rank: 7Rank: 7

积分
1432 
威望
1432  
包包
13671  

金话筒 帅哥研究员 优秀版主

17
发表于 2010-3-5 09:15 |只看该作者
回复 15# hansey
" [: Z0 W8 J# {7 \, U9 D* x  L& S6 a+ q

2 V1 m6 M2 m( a  t$ Z, Y9 Z谢谢0 z( c* C4 d8 T
有没有全书的完整版啊
% A- Z% n# g" d( C: h' Z5 W& {5 }& o这只是个书的介绍!

Rank: 2

积分
122 
威望
122  
包包
569  
18
发表于 2010-3-5 14:32 |只看该作者
哦噢!

Rank: 2

积分
265 
威望
265  
包包
543  
19
发表于 2010-3-7 19:18 |只看该作者
可是这个版本(如果是,我就给你下):: H* s3 U: C0 w0 w6 u2 T- t2 M1 {. c
Table of Contents2 v/ v9 Y/ l  k% e  A5 q

( g" Y7 ~+ \, F5 qI. Principles of Developmental Biology
; }2 E. a; h- k* j" P/ f2 B! g) {+ e$ Q7 d# t- A7 q
1. Developmental biology: The anatomical tradition
; x. q, x+ [$ o9 @, S3 jNew techniques of mathematical modeling of development1 B, U' Y" l( p' O9 x0 e& c* ~
2. Life cycles and the evolution of developmental patterns) Z, h, z! P! _9 x1 f1 i
Recent advances in planarian regeneration
& t7 f% g! w; [% {8 s! |# K3. Principles of experimental embryology
% q# g' W- D; h4. The genetic core of development
; Y4 }/ \+ l, Y8 s5 Q5. The paradigm of differential gene expression
( i- V3 g5 V' U6 c+ ?Histone modifications
$ T; n1 f! x" [. I2 q. _/ eMicroRNAs
% G5 t) B8 X8 V7 A, CPioneer transcription factors* T- [! z0 N. A! F
Mammalian cloning and methylation patterns4 |! R- F( O, H& ?' g3 ?
6. Cell–cell communication in development  m! V3 P8 A, w
Stem cell specification and stem cell niches
+ A) e7 K6 ~7 r4 q6 TMorphogenetic regulation by cadherins% p" l% m& g0 A
Noncanonical Wnt pathways! H2 M% }: a4 P
Dependence receptors and apoptosis
- z' O8 |5 i, U" Q4 oCommunity effect and autocrine factors
7 k5 M: L* G- f, C" N. K
( m) h' d- P2 v2 I; h7 @% s( K; yII. Early Embryonic Development
# X9 f4 s1 m' _: s
4 b: ~9 u6 w  V- {: C$ W% X7. Fertilization: Beginning a new organism7 @: [# ~( P( b+ v* F( b: X
Cortical granule components+ p2 G8 n& R' ]; j3 X0 ]  ]
New mammalian sperm–egg binding model
3 P" H3 y4 j# ]Mammalian sperm chemotaxis and thermotaxis$ j' L4 p  g+ o, Z$ u6 i- |
Mechanisms of sea urchin sperm chemotaxis
% T  Q: Y4 G8 S4 A( PSea urchin bindin receptor
/ \* S/ G( A$ h. l8 ROocyte translation inhibitors and their removal
/ a) @) Z$ R- m4 INew hypotheses of sperm activation% o9 d( r% }7 I1 D
Mammalian sperm–egg fusion
! [5 \, i1 |- z/ K  b3 ^- g5 o) c8. Early development in selected invertebrates
, j# o- _# `4 S4 I* C) zWnt and Nodal in sea urchin axis specification) h; J' G6 O' h' d0 t
Coiling genetics of snail embryos
" T% }8 B+ w0 c$ V: QFunctions of tunicate yellow crescent
  M. R3 M0 ?3 I" k! c4 lRoles of FGFs in tunicate development9 d$ U5 D3 j$ g) f! Q" {9 M
Tunicate heart development
( }( |% t2 [( t# U9 X9. The genetics of axis specification in Drosophila
0 n, D/ V$ v/ v" S$ {FGF signals and Drosophila mesoderm formation. p8 w  h4 a8 N/ |# c
Transport of Nanos and Bicoid messages to opposite ends of the fly oocyte
& Q) n9 y7 Y- t/ j: i2 L) r- y5 TNew model for gap protein stabilization
. ~/ d& @6 L$ m- }1 Q* W10. Early development and axis formation in amphibians
5 L4 ]& V0 \4 S: t. {; oNew models for organizer formation in Xenopus
) Z! g* U! A- S/ W: x, _  s3 P  p! CNew model for mesoderm specification in Xenopus
9 u& f! ?5 w6 x* f" \8 w4 z11. The early development of vertebrates: Fish, birds, and mammals
* P7 K4 t7 Y+ t1 fMaternal effect mutations in zebrafish
& h0 H5 L8 J0 i" Y$ VNeurulation in zebrafish. S6 g! y& h  \5 Z9 T; @0 t9 D
Retinoic acid in anterior–posterior axis specification in chordates9 p6 K3 z' t$ D# _' e
Ciliary movements and left–right axis specification in vertebrates
. M. w- X- z. j" a! RRole of Cerberus in chick head formation
6 W( U6 q  g! D& V# S! YMesoderm specification and migration in chick gastrulae. B+ T! ~1 p& i; B3 L! f$ n
FGF and cell fate in chick and mammalian epiblasts0 J! K  p) F! x
Induction of pluripotency in mammalian inner cell mass blastomeres
$ n2 Z- \7 N8 nHomeotic transformation in mammals due to total Hox paralog knockouts
- I1 F/ S$ I) ZControversy over blastocyst polarity in mammals8 g: v7 l8 f& ]: C5 ?2 Z7 t" i
Folate receptors and teratogens affecting neurulation% f3 f' Z2 S% O( e% C
+ [7 A# F0 W* Q, W0 C
III. Later Embryonic Development* k5 n% @$ ]' t6 l/ J4 p! F
0 a8 _' F. [$ x  K  y4 [' p' z9 Q! S
12. The emergence of the ectoderm: Central nervous system and epidermis( W% X1 Z1 y$ f5 h
Genes specifying neural fate
9 p9 f2 A$ M& N8 q: }$ _- hHuman-specific genes specifying brain growth
# k0 \& @& P% D* GProgressive myelination of the human brain
1 B% u6 z" ~( _! K- U/ U/ ?0 }Neural stem cells
, x  j$ E$ }( F( f! GEye development and blind cave salamanders
0 h; U$ W' S% n" OSkin, hair, and pigment stem cells2 Z% G. S1 V& ?- x& P  \: \( b+ x
13. Neural crest cells and axonal specificity
6 g8 U% B9 A) z5 qNeural crest cell specification and migrations
2 U2 Z) t, G; X2 Z6 iHead vs. trunk neural crest specification
3 _" E. ^6 G# M; ~2 z; G, aNeural crest-endoderm interactions forming facial structures
, ~& ]- V! C& ~8 l/ gPlacode specification and separation
/ F% K6 X) |+ ZTooth development and evolution+ K$ U" m" g1 n  `
Semaphorins, Robo, and ephrins in neural patterning( t; Z7 k7 _  U5 o
14. Paraxial and intermediate mesoderm
3 `! o$ N6 z8 |& E0 D4 YSpecification of paraxial and intermediate mesoderm8 q3 Q$ r$ ~5 }5 A9 W$ p! i
Epithelialization of somites
- S8 R; b9 K' B1 j, t7 sThe syndetome—where tendons arise
2 X# U0 F2 T. f0 fFGFs, Notch, and Wnt in somite specification and separation
7 T1 V3 R0 j% g1 B- u9 \The primaxial and abaxial musculature
) v  h+ b( {1 o) K7 {6 XNew sources of muscle precursor cells8 d- O- W+ O4 [/ o# y/ A* }' W; e
Pathways of skeleton formation1 \- D7 l! w$ d7 h
Regulating ureteric bud branching! F- b* \6 Z+ E" H* `' c
Wnt and FGF proteins regulating nephron formation
1 @) r  A" M% }7 O15. Lateral plate mesoderm and endoderm, k" u( a- u8 a8 [9 M! P
Cloaca formation- e% k0 r- ^  e* ^2 s  [
Heart cell specification. R8 g0 b6 H. W5 D+ o2 H9 U
Tbx genes, retinoic acid and heart chamber formation2 `" O* R! U; Y% K6 U$ ^' h) c) T* t
Heart valve development
; w4 N/ F  K! Q4 Z; P/ K* }Hematopoietic stem cells and their derivatives6 G7 g$ k8 L& ~
Lymphatic development
# J* U. |& J% c3 wInduction of arteries by neurons( X4 a8 u+ F' K  ~) }
Placenta as source of blood stem cells
2 K# r) A- U% F# e# m8 u) [Adult blood stem cell niches; F8 u9 j' t9 k! l9 A. O; `
Endoderm specificity
- b" W% {& K: t" W5 P0 vPancreas vs. liver development
- ^( a* l: Q4 I4 G) WFate mapping pancreatic cells
. G% w! Y, }7 k3 g+ B* _- r# L6 }2 c16. Development of the tetrapod limb- R, m' Z; A3 e1 Q0 \
Hox code of limb development
9 ?9 h) k/ v1 kSpecification of the digits by hedgehog proteins and HoxD genes9 u5 t2 {5 |4 U3 T8 a( |% l. c
Controversy over digit identities in dinosaurs and birds' {& e1 C5 v% t0 a8 t  q6 T
Getting limbs from fins/ X3 m: Q) |6 `0 ~
17. Sex determination
& x2 s3 ]  z# l* {7 D" M6 L; ~Timing and gene expression in mammalian sex determination7 P& x! `- L+ d. G/ b1 H
Brain sex determination pathways in vertebrates and flies
1 v6 F* A5 R/ [& Z; ^2 U: z: GHormone disruptors and sex determination problems" z5 k5 d3 X# Z/ N- o" ?
Dosage compensation and sex determination  C) `9 n1 @, C; I" X7 ^
Temperature-dependent sex determination in turtles* `* O% I9 L1 f  u
18. Metamorphosis, regeneration, and aging
* B2 z7 T% H& HMolecular mechanisms of amphibian metamorphosis8 K) O% r- D$ M( V3 i6 m( h7 g: s
Ecdysone receptors and the response to molting hormone. p. V! O1 T- r6 @1 i2 N9 t; B0 z
Compartment formation in the wing imaginal disc# E% U$ J5 N9 H& V# a0 m) W
Why can’t we regenerate our limbs?- b7 ^1 P  H! f7 }
Neuron- and mesenchyme-dependent stages of limb regeneration
, y' ~7 N8 `: \5 [0 ^Specification of limb regions by transcription factors during regeneration
3 r2 g$ u! h% D; y+ zMitochondrial control of aging* m9 f( r* E1 H
Insulin pathway control of aging and possible relation to oxygen radicals; N; D2 j( |. l( H2 Z  s5 |
“Ageless” animals and environmental control of aging
3 A( _, G% I  p4 v" ~" P19. The saga of the germ line- x) n) a, Q& u9 L! i
Genetic specification of germ-line cells in Drosophila and vertebrates6 U6 z8 X. M  g% S; ^: d1 e
Components of the Drosophila germ plasm5 m6 I! v) T' J: U% q# M- i4 D
Egg and sperm stem cell niches in Drosophila. h: c/ W% I! P5 f% [
Migration of primordial germ cells in mammals, chicks, and flies  |! a& O8 ]2 _/ p! z
Determination of meiosis and mitosis in C. elegans
1 I* \. D6 ]9 w! m+ FRetaining mammalian spermatic stem cells6 `, I# K2 z3 h6 f6 t+ U. A2 y& H8 }
IV. Ramifications of Developmental Biology! s6 j8 v' D( j8 W0 N
20. An overview of plant development
2 \  Q  w5 ~7 j: M8 y0 [% iGamete formation and pollen tube guidance9 q1 U- n$ w3 s$ J+ w
Maternal effects and embryo development
* d( R5 }: b; @& X4 w6 JRadial and axial patterning# v& B+ p0 d; i; t
New model for auxin specification of polarity8 [. K  K% d: i
Roles of microRNAs in plant development
; ]5 s5 M8 \% i: |  D  eDorsal–ventral leaf patterning
% M0 W& {% w3 {Long-distance RNA transport and flowering0 v; B* |2 l# T# D/ M
Floral meristem specification9 P7 F$ s4 s; f( p9 ^
21. Medical implications of developmental biology
. c( R3 t! e! m+ q) U# \7 e' TMechanisms of alcohol teratogenesis; `) s) ~' X: x* ~
Effects of endocrine disruptors on human development" w" F0 S9 O0 ~' Q# ~
Nutritional effects of gene methylation and disease susceptibility
, K: `/ X  x) j9 ~7 {8 N% V/ ]! \Cancer as a disease of development* X' B/ @( O! ~8 c0 @) p1 j
Cancer stem cell hypothesis
5 H' Q8 \( C+ @( EDevelopmental approaches to cancer therapy
8 |4 J' H& A! b% i( k- U& H/ c4 CStem cell therapeutics  T/ K" F7 |: i1 T
Regenerating human limbs and neurons6 I1 x7 S0 ^2 n- F$ u( `( E# K- p
22. Environmental regulation of animal development1 J" Y( y& I% B2 r4 ~4 d/ L( V
Molecular bases for environmental regulation of gene expression
' t# L; T# b8 D4 o9 C, H+ `: l• Importance of symbionts in mammalian gut and immune system
% M9 R3 O# u2 W, ~/ D5 W! V$ Rdevelopment
; d8 B" F* F/ h+ ZSignaling from fetal mammalian lung to initiate labor
2 r+ _% D, o; w! eThe role of nutrition in the development of the dung beetle
# C" ?8 }1 Z$ R* T" V* yPredator-induced polyphenism and toxicity testing  x6 u# S  q( ~5 m2 o% E, ]$ W* {
Genetic assimilation of environmentally induced traits5 \; G( R5 U. a6 ]
23. Developmental mechanisms of evolutionary change
/ r( V1 \0 g# V+ d, Y( ?+ pDevelopmental modularity and evolution (stickleback studies)
0 i3 p9 m2 g! S" t5 gEvolution by heterochrony, heterotopy, heterometry, heterotypy
% [% @! J, U4 j4 Y' PBMPs and Darwin’s finches
; l- b9 F" Z' S3 F2 W9 ^! w( wOrigin of neural crest cells and the origin of jaws' i9 q- }/ }" {) x& ^1 l
The search for the Urbilaterian ancestor

Rank: 7Rank: 7Rank: 7

积分
1432 
威望
1432  
包包
13671  

金话筒 帅哥研究员 优秀版主

20
发表于 2010-3-8 08:24 |只看该作者
回复 19# singtom
$ _3 \" O7 k( R6 L) |$ X7 V7 D! W4 s0 c1 K- [, D4 K

$ z' w  ~1 f, H" U! Z    目录是对的,可是内容还是第六版的,这个电子书是我制作的,上传在论坛,现在还可以下到!
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-22 14:53

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.