干细胞之家 - 中国干细胞行业门户第一站

标题: Is HP1 an RNA detector that functions both in repression and activatio [打印本页]

作者: 杨柳    时间: 2009-3-6 00:47     标题: Is HP1 an RNA detector that functions both in repression and activatio

Department of Biology, University of Kentucky, Lexington, KY 40506
+ @4 q" w, i- |+ F2 J- j
  }' }( _% y! U- e$ c' B" tAddress correspondence to Rebecca Kellum, 101 T.H. Morgan Building, Department of Biology, University of Kentucky, Lexington, KY 40506-0225. Tel.: (859) 257-9741. Fax: (859) 257-1717. E-mail: rkellum@uky.edu$ {! \1 q5 I  o7 q! }
( \& }; \- r+ j3 U* t
Abstract+ M$ m+ Z/ c; Q. m
( X6 _6 L  s2 Y
Heterochromatin is defined as regions of compact chromatin that persist throughout the cell cycle (Heitz, 1928). The earliest cytological observations of heterochromatin were followed by ribonucleotide labeling experiments that showed it to be transcriptionally inert relative to the more typical euchromatic regions that decondense during interphase. Genetic studies of rearrangements that place euchromatic genes next to blocks of heterochromatin also pointed out the repressive nature of heterochromatin (Grigliatti, 1991; and references therein). The discovery of the heterochromatin-enriched protein heterochromatin protein 1 (HP1)* by Elgin and co-workers in the mid-1980s suggested that the distinct cytological features of this chromatin may be related to its unique nucleoprotein composition (James and Elgin, 1986; James et al., 1989). HP1 immunostaining on polytene chromosomes from Drosophila larval salivary glands was used to show enrichment of the protein in pericentric heterochromatin. Since that initial discovery, HP1 homologues have been found in species ranging from fission yeast to humans where it is associated with gene silencing (Eissenberg and Elgin, 2000; and references therein). A number of euchromatic sites of localization were also reported in this original study. It has been generally assumed that these sites might constitute euchromatic sites of transcriptional repression by HP1. Indeed, several genes located at one of these sites (cytological region 31) have increased transcript levels in mutants for HP1 (Hwang et al., 2001).
* g" ]8 E8 a; f  z7 D
0 A$ s- z' C' ^" [  N) y* Abbreviation used in this paper: HP1, heterochromatin protein 1.
( Z$ W9 k: N2 N: z1 q
7 r  W9 A; P4 V6 iIn this issue, Piacentini et al. (2003) report the unexpected association of HP1 with transcriptionally active regions of euchromatin. Moreover, this article shows recruitment of HP1 to ecdysone-activated puffs and to the well known heat shock–induced puffs of polytene chromosomes. The heat shock loci have served as models for transcriptional activation and the accompanying changes in chromatin organization. The finding that HP1 is recruited to transcriptionally activated puffs flies in the face of current thinking about HP1 function as a transcriptional repressor. Wakimoto and co-workers showed a transcriptional activating function for HP1 in the expression of genes located in heterochromatin (Hearn et al., 1991), but this is the first report of a requirement for HP1 for proper expression of euchromatic genes. This association of HP1 with puffs is shown to be functionally relevant; both hsp70 transcript and protein levels are reduced in loss of function mutants for HP1 and elevated in stocks carrying two extra copies of the HP1-encoding gene as a transgene.
' u. ~9 X# k6 ]/ y
3 J% d, Q8 F$ r* }/ Z7 FInterestingly, several lines of evidence support a role for RNA in the recruitment of HP1 to puffs. Chromatin immunoprecipitation experiments suggest an association of HP1 with hsp70 gene coding sequences rather than their promoters. Protein–protein interactions with the heat shock transcription factor HSF are not likely to be involved; HP1 is not recruited to ectopic binding sites for HSF unless transcription is initiated from those sites. HP1 is also not recruited to puffs induced by sodium salicylate without accompanying transcription. Finally, HP1 is released from puffs by treating the heat shock–induced chromosomes with RNase.: J! V' y. B# L; f7 V' g* q+ ~* k
/ A" D7 g# {- u' d! w  z. i
RNA has also been implicated in targeting of HP1 to heterochromatin. Its association with centric heterochromatin in mammalian cells is RNase sensitive (Maison et al., 2002). Recent studies in S. pombe also implicate RNA in HP1 targeting to centric heterochromatin. Double-stranded interference RNA produced from centromeric transposons direct a lysine 9–specific histone H3 methyltransferase activity to centromeres that provides a chromatin binding site for HP1 (Reinhart and Bartel, 2002; Volpe et al., 2002). This histone modification has been strongly implicated in HP1 association with chromatin, and binding of HP1 to this modification requires its conserved chromodomain (Bannister et al., 2001; Jacobs et al., 2001; Lachner et al., 2001; Schotta et al., 2002).1 E0 ^& [' F" O# w  |

; r. P! `/ R8 i) NInterestingly, Piacentini et al. (2003) also show failure of HP1 mutants lacking the chromodomain to associate with puffs. This is of interest because an earlier piece of work by Becker and co-workers showed the chromodomain of the MOF histone H4 acetyltransferase to confer RNA-binding activity in the hyperactivation of the X chromosome in Drosophila males (Akhtar et al., 2000). This suggests dual roles for the HP1 chromodomain in HP1 targeting, one involving binding to histones and another involving binding to RNA.7 S/ W; R& J7 o/ h
3 J  b8 z( o+ S5 M. u
These dual binding activities for the chromodomain carry intriguing implications for both how HP1 is recruited to chromosomes and how it might specify distinct activities at distinct sites. HP1 is now known to be a highly interactive protein; it is capable of interacting with a host of proteins with a range of nuclear activities (Kellum, 2003; and references therein). Do RNA sense strands recruit transcriptional activators to sites of active transcription through HP1, while RNA double strands specify targeting of a separate class of HP1 repressing complexes to heterochromatic regions? If sense RNA strands are capable of recruiting HP1 to euchromatic sites, why is recruitment largely restricted to sites of intense transcriptional activity? Does HP1 affect different aspects of transcriptional regulation at active versus repressed sites, or does it have reciprocal effects on a single process? These are just some of the interesting questions prompted by these findings.; M0 t- _+ B# l7 R: i
. Q8 O) |# O$ u6 y2 G; C; Y3 W2 ?
It is generally assumed that HP1 forms a repressive chromatin structure that affects transcription initiation rates at repressed sites. Nuclease hypersensitivity mapping studies on transgenes inserted into heterochromatin support this assumption (Wallrath and Elgin, 1995; Cryderman et al., 1999). However, the majority of studies of HP1 regulation have relied on phenotypic assays (such as position effect variegation) or measurements of steady state mRNA levels. One exception to this is the use of a nuclear run-on assay showing HP1 regulation of transcription initiation rates at cenH transposons (Volpe et al., 2002). The finding by this study (Piacentini et al., 2003) that HP1 is associated with gene coding rather than promoter sequences suggests alternative mechanisms for HP1 in regulating gene expression. For example, it could function in the elongation phase of transcription or even in stabilizing mRNAs. The effects reported for HP1 gain and loss of function mutants on heat shock gene mRNA and protein levels in this study are complex and may suggest roles for HP1 in regulating gene expression after the initiation of transcription. At 3 h after heat shock induction, transcript and protein levels were decreased in loss of function mutants but increased in gain of function mutants. The reverse was observed 7 h after heat shock. The authors speculate that the inverse effects of each class of mutation at the different time points are a result of an autoregulatory feedback mechanism that is known to respond to heat shock protein levels in heat shock recovery. It is conceivable that HP1 functions in this autoregulatory mechanism, and that HP1 levels affect the speed of recovery from heat shock activation. Such a role may be more akin to the more generally held view for HP1 function as a transcriptional repressor.
6 s4 [( k9 y6 |3 c
2 J% A2 ~: J1 sRegardless of the precise role for HP1 at the heat shock–induced puffs, the finding that it is associated with transcriptionally active regions and that this association is RNA dependent prompts questions that will certainly add a new dimension to our understanding of HP1 targeting and function./ V- L# h- d1 _
- j3 ]- A7 R0 ]
References! D$ H7 R7 w, S) x
" D( v2 t! o9 h% }! Q* I0 t
Akhtar, A., D. Zink, and P.B. Becker. 2000. Chromodomains are protein-RNA interaction modules. Nature. 407:405–409.( W# X2 w1 L, _' `
. r3 g: |: Y" O  k4 n, f3 l
Bannister, A.J., P. Zegerman, J.F. Partridge, E.A. Miska, J.O. Thomas, R.C. Allshire, and T. Kouzarides. 2001. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 410:120–124.! ]. A. R/ c/ X0 u3 r
8 z; g3 q$ m) H  N9 f9 Q" J" ^
Cryderman, D.E., H. Tang, C. Bell, D.S. Gilmour, and L.L. Wallrath. 1999. Heterochromatic silencing of Drosophila heat shock genes acts at the level of promoter potentiation. Nucleic Acids Res. 27:3364–3370.
& v# q3 ?% E! c9 }
2 R) i8 h: E% yEissenberg, J.C., and S.C.R. Elgin. 2000. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10:204–210.
8 C( j8 N/ T  X9 {- c1 x+ a& U1 G- C5 B4 y
Grigliatti, T. 1991. Position effect variegation〞An assay for nonhistone chromosomal proteins and chromatin assembly and modifying factors. Methods Cell Biol. 35:587–627.2 T5 V" I& B, X$ L" V

$ }; ?  }5 |" d4 W2 \2 G/ Y# o/ H2 mHeitz, E. 1928. Das Heterochromatin der Moose. Jahrbücher für Wissenschaftliche Botanik. 69:762–818.% ^6 C" W, x3 X% b. m

* }4 ?+ c) U+ Q4 D" \0 ]; nHearn, M.G., A. Hedrick, T.A. Grigliatti, and B.T. Wakimoto. 1991. The effect of modifiers of position-effect variegation on the variegation of heterochromatic genes of Drosophila melanogaster. Genetics. 128:785–797.7 x& t  t" t1 Z2 d# X) L$ v3 F

4 p/ T# `" I6 G  `! vHwang, K.-K., J.C. Eissenberg, and H.J. Worman. 2001. Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc. Natl. Acad. Sci. USA. 98:11423–11427.
+ d& S- b3 ?0 l* S" u; _$ v* y8 z3 F3 W6 d# o- q
Jacobs, S.A., S.D. Taverna, Y. Zhang, S.D. Briggs, J. Li, J.C. Eissenberg, C.D. Allis, and S. Khorasanizadeh. 2001. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 20:5232–5241.
1 v$ _. d. d5 H- Q' L, R2 k  |. {0 @& P
James, T.C., and S.C.R. Elgin. 1986. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol. Cell. Biol. 6:3862–3872.3 m1 v: w$ t' i, ~# i. R& T4 J7 d! {
$ ?) F& c6 g( ?0 m9 `
James, T.C., J.C. Eissenberg, C. Craig, V. Dietrich, A. Hobson, and S.C. Elgin. 1989. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol. 50:170–180.5 W' v  F% p( t, G# O6 K

, q: [/ P, H% d9 F' |Kellum, R. 2003. HP1 complexes and heterochromatin assembly. Curr. Top. Microbiol. Immunol, Vol. 274. J.L. Workman, ed. Springer-Verlag Berlin, Heidelberg, New York. 53–77.
0 c/ G* n# ]" U! G4 t8 T2 j& W
6 G8 h7 ?8 U4 p' Z" i+ yLachner, M., D. O'Carroll, S. Rea, K. Mechtler, and T. Jenuwein. 2001. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 410:116–120.
- U/ ~7 ?- L: b8 d
; i: u. E, q8 @7 `+ @/ JMaison, C., D. Bailly, A.H. Peters, J.P. Ouivy, D. Roche, A. Taddei, M. Lachner, T. Jenuwein, and G. Almouzni. 2002. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30:329–334.
4 [3 Y. f$ ~8 R% Y! |1 x; I& z8 x6 T) V, G# A5 r; @8 L0 k
Piacentini, L., L. Fanti, M. Berloco, B. Perrini, and S. Pimpinelli. 2003. Heterochromatin Protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J. Cell Biol. 161:707–714.! M2 P$ _5 k5 [

& t8 n  x5 }& [8 U! N* L% SReinhart, B.J., and D.P. Bartel. 2002. Small RNAs correspond to centromere heterochromatic repeats. Science. 297:1831.* J+ J% w, i. E; u; ?6 |/ V

% ~. n9 C( y( w, f$ K7 m2 _8 mSchotta, G., A. Ebert, V. Krauss, A. Fischer, J. Hoffmann, S. Rea, T. Jenuwein, R. Dorn, and G. Reuter. 2002. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21:1121–1131.! E6 r* n' h$ {# I1 C) x6 p

* I7 h* ^) c1 BVolpe, T.A., C. Kidner, I.M. Hall, G. Teng, S.I. Grewal, and R.A. Martienssen. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science. 297:1833–1837.; Q4 o% i- d  o& C

7 X9 h+ L2 M: p) BWallrath, L.L., and S.C.R. Elgin. 1995. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 9:1263–1277.(Rebecca Kellum)
作者: 张佳    时间: 2015-6-6 11:41

不错啊! 一个字牛啊!  
作者: 兔兔    时间: 2015-6-23 09:51

好 好帖 很好帖 确实好帖 少见的好帖  
作者: marysyq    时间: 2015-6-24 11:18

真是佩服得六体投地啊  
作者: aakkaa    时间: 2015-6-30 21:18

顶的就是你  
作者: 科研人    时间: 2015-7-8 15:43

祝干细胞之家 越办越好~~~~~~~~~`  
作者: biobio    时间: 2015-7-11 20:33

支持你一下下。。  
作者: 昕昕    时间: 2015-7-29 17:01

我该不会是最后一个顶的吧  
作者: aakkaa    时间: 2015-7-30 13:02

非常感谢楼主,楼主万岁万岁万万岁!  
作者: 石头111    时间: 2015-8-2 11:53

我卷了~~~~~~~  
作者: s06806    时间: 2015-8-2 20:50

我又回复了  
作者: nauticus    时间: 2015-8-5 11:34

昨晚多几分钟的准备,今天少几小时的麻烦。  
作者: 我心飞翔    时间: 2015-8-8 17:27

我帮你 喝喝  
作者: s06806    时间: 2015-8-25 11:10

老大,我好崇拜你哟  
作者: biobio    时间: 2015-9-14 07:43

设置阅读啊  
作者: marysyq    时间: 2015-9-16 16:43

我好想升级  
作者: 张佳    时间: 2015-9-28 02:23

不错不错,我喜欢看  
作者: 大小年    时间: 2015-11-20 17:48

端粒酶研究
作者: 橙味绿茶    时间: 2015-12-3 15:10

自己知道了  
作者: 兔兔    时间: 2015-12-12 15:59

严重支持!
作者: 科研人    时间: 2015-12-28 14:43

楼主也是博士后吗  
作者: s06806    时间: 2016-1-21 16:10

长时间没来看了 ~~  
作者: leeking    时间: 2016-2-15 18:35

我想要`~  
作者: 咕咚123    时间: 2016-3-10 17:27

非常感谢楼主,楼主万岁万岁万万岁!  
作者: pcr    时间: 2016-4-21 19:17

不错,看看。  
作者: 水木清华    时间: 2016-5-15 22:01

好帖子,要顶!
作者: kaikai    时间: 2016-5-28 16:00

今天无聊来逛逛  
作者: Greatjob    时间: 2016-6-4 13:18

今天的干细胞研究资料更新很多呀
作者: 兔兔    时间: 2016-6-17 08:18

每天到干细胞之家看看成了必做的事情
作者: nauticus    时间: 2016-7-8 12:27

干细胞研究非常有前途
作者: xm19    时间: 2016-7-13 17:53

我来了~~~~~~~~~ 闪人~~~~~~~~~~~~~~~~  
作者: kaikai    时间: 2016-8-13 12:35

有空一起交流一下  
作者: 咖啡功夫猫    时间: 2016-8-30 09:43

挤在北京,给首都添麻烦了……  
作者: nauticus    时间: 2016-8-31 13:10

我在顶贴~!~  
作者: 陈晴    时间: 2016-9-19 21:15

顶下再看  
作者: 干细胞2014    时间: 2016-9-23 14:18

好人一个  
作者: s06806    时间: 2016-10-16 15:10

这个站不错!!  
作者: 8666sea    时间: 2016-10-31 10:10

几头雾水…  
作者: 张佳    时间: 2016-11-10 17:10

昨晚多几分钟的准备,今天少几小时的麻烦。  
作者: 983abc    时间: 2016-12-9 18:16

我来看看!谢谢  
作者: sky蓝    时间: 2017-1-20 07:06

宁愿选择放弃,不要放弃选择。  
作者: 龙水生    时间: 2017-1-25 12:00

免疫细胞疗法治疗肿瘤有效  
作者: immail    时间: 2017-1-26 00:01

正好你开咯这样的帖  
作者: 分子工程师    时间: 2017-2-2 19:10

爷爷都是从孙子走过来的。  
作者: 一个平凡人    时间: 2017-2-3 06:48

间充质干细胞
作者: 锦锦乐道    时间: 2017-2-6 00:53

不错,支持下  
作者: 苹果天堂    时间: 2017-2-26 05:02

勤奋真能造就财富吗?  
作者: 小小C    时间: 2017-2-28 01:27

我好想升级  
作者: DAIMAND    时间: 2017-3-3 18:32

小生对楼主之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心.  
作者: popobird    时间: 2017-3-24 02:43

发贴看看自己积分  
作者: 丸子    时间: 2017-5-21 09:00

我喜欢这个贴子  
作者: abc987    时间: 2017-5-31 12:01

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: keanuc    时间: 2017-6-5 11:35

我在努力中  
作者: haha3245    时间: 2017-6-13 09:35

貌似我真的很笨????哎  
作者: bluesuns    时间: 2017-7-6 12:09

努力~~各位。。。  
作者: lab2010    时间: 2017-7-14 04:44

佩服佩服啊.  
作者: 初夏洒脱    时间: 2017-7-21 11:35

加油啊!偶一定会追随你左右,偶坚定此贴必然会起到抛砖引玉的作用~  
作者: sky蓝    时间: 2017-7-30 21:59

貌似我真的很笨????哎  
作者: happyboy    时间: 2017-8-5 14:10

小生对楼主之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心.  
作者: dglove    时间: 2017-8-17 05:21

今天的干细胞研究资料更新很多呀
作者: 狂奔的蜗牛    时间: 2017-8-27 07:00

加油站加油  
作者: 老农爱科学    时间: 2017-8-27 08:40

谢谢分享了!   
作者: 三星    时间: 2017-9-4 08:28

一个人最大的破产是绝望,最大的资产是希望。  
作者: 陈晴    时间: 2017-9-5 06:26

我帮你 喝喝  
作者: feixue66    时间: 2017-9-12 05:07

鉴定完毕.!  
作者: awen    时间: 2017-10-16 04:24

来上茶~~~~  
作者: 海小鱼    时间: 2017-10-23 09:18

真是佩服得六体投地啊  
作者: 多来咪    时间: 2017-10-29 08:18

小生对楼主之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心.  
作者: 草长莺飞    时间: 2017-11-6 06:22

神经干细胞
作者: dr_ji    时间: 2017-11-24 11:10

皮肤干细胞
作者: xiao2014    时间: 2017-12-21 15:54

发贴看看自己积分  
作者: dypnr    时间: 2017-12-22 22:42

怎么就没人拜我为偶像那?? ~  
作者: sshang    时间: 2018-1-20 09:35

这年头,分不好赚啊  
作者: 坛中酒    时间: 2018-1-24 18:27

嘿嘿  
作者: Whole    时间: 2018-1-27 15:26

几头雾水…  
作者: 红旗    时间: 2018-2-5 20:23

既然来了,就留个脚印  
作者: Whole    时间: 2018-2-10 01:58

我想要`~  
作者: DAIMAND    时间: 2018-3-4 20:49

水至清则无鱼,人至贱则无敌!  
作者: 化药所    时间: 2018-3-6 00:18

帮顶  
作者: cjms    时间: 2018-3-13 22:05

谢谢干细胞之家提供资料
作者: biopxl    时间: 2018-3-19 07:43

慢慢来,呵呵  
作者: ringsing    时间: 2018-4-29 08:34

先看看怎么样!  
作者: netlover    时间: 2018-5-1 08:17

干细胞从业人员  
作者: biobio    时间: 2018-5-12 15:42

帮你项项吧  
作者: Kuo    时间: 2018-5-12 22:38

好啊,谢楼主
作者: 红旗    时间: 2018-5-15 04:27

我是来收集资料滴...  
作者: 桦子    时间: 2018-6-8 11:42

说嘛1~~~想说什么就说什么嘛~~  
作者: highlight    时间: 2018-6-29 21:38

观看中  
作者: 修复者    时间: 2018-7-2 03:31

神经干细胞
作者: biodj    时间: 2018-7-5 23:22

支持一下吧  
作者: DAIMAND    时间: 2018-7-7 19:26

这样的贴子,不顶说不过去啊  
作者: 小丑的哭泣    时间: 2018-7-15 18:17

干细胞库  
作者: 温暖暖    时间: 2018-7-29 16:28

加油啊!!!!顶哦!!!!!  
作者: 蝶澈    时间: 2018-8-5 00:10

谢谢哦  
作者: tuting    时间: 2018-8-5 04:02

不对,就是碗是铁的,里边没饭你吃啥去?  
作者: leeking    时间: 2018-8-8 07:35

真是佩服得六体投地啊  
作者: 丸子    时间: 2018-9-30 22:26

观看中  
作者: immail    时间: 2018-10-28 15:17

宁愿选择放弃,不要放弃选择。  
作者: qibaobao    时间: 2018-10-31 08:01

免疫细胞治疗  
作者: doors    时间: 2018-11-11 04:41

干细胞抗衰老  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://stemcell8.cn/) Powered by Discuz! X1.5