干细胞之家 - 中国干细胞行业门户第一站

标题: Paradigm lost: milton connects kinesin heavy chain to miro on mitochondria [打印本页]

作者: 飞鸟二世    时间: 2009-4-25 10:11     标题: Paradigm lost: milton connects kinesin heavy chain to miro on mitochondria

Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
' b: y& p' g3 t3 {. {. z
  R" d* N* Q, a: a& iThe kinesin motor typically binds to cargo through its light chains. In this issue Glater et al. (p. 545) demonstrate a new type of linkage through the adapter protein, milton, and the mitochondrial membrane GTPase, miro. This is an important result because it represents a new mechanism of cargo binding and because miro's ability to bind GTP and calcium suggests that it is involved in the regulation of mitochondrial transport.
$ g4 I9 U0 U  \, O
" W; T% B* \7 [: [Mitochondrial transport: taking energy where it's needed, when it's needed
; M7 _) g) u! K' K# A. A) O# k& \' @- V
Polarized cells have an uneven distribution of active ATPases and they position their mitochondria so that ATP is produced close to where it is needed. Transportation of mitochondria to meet local energy needs is especially critical in neurons, where the site of mitochondrial production in the cell body (Davis and Clayton, 1996) can be centimeters away from a growth cone or synapse with high local ATP demand. Mitochondria move along both microtubules and actin, using microtubule-based molecular motors for long distance movements (Morris and Hollenbeck, 1995). They are among the most abundant and most mobile membrane-bound organelles and, thus, are a major cargo for microtubule motors. Conventional kinesin moves mitochondria to the plus ends of microtubules, while dynein moves them toward the minus ends (Tanaka et al., 1998; Pilling et al., 2006). Mutations in kinesin motors disrupt organelle transport causing mitochondria to bunch up in the axon or cell body, leading to neuronal dysfunction (Hurd and Saxton, 1996).
2 Y9 M+ Y) S0 |
. i5 n6 ?6 f9 h4 Z" NMitochondria are distributed in cells with exquisite fine-tuning of both their location and number, and their transport is likely to be a very well-regulated process. Their distribution varies in response to multiple regulatory cues such as energy requirements, growth factors, or the membrane potential of the mitochondria (Morris and Hollenbeck, 1993; Chada and Hollenbeck, 2004; Miller and Sheetz, 2004). For example, Morris and Hollenbeck (1993) observed increased anterograde transport of mitochondria to active versus inactive growth cones, while Chada and Hollenbeck (2004) showed that mitochondria accumulate at local sites of nerve growth factor application. These experiments left two major questions: How do mitochondria connect to molecular motors How is their movement by molecular motors controlled/ _5 |2 x9 t* ~0 ~0 v2 k/ F# m% }8 k

# Y$ i" c3 v) x! v5 J7 a0 ZA key finding for addressing these two questions came from recent genetic screens in Drosophila. Defects in axonal transport were lethal at the embryonic or larval stages in previous screens, hampering the identification of proteins involved in axonal transport of mitochondria in Drosophila. However, Stowers and colleagues created mosaic flies whose eyes were homozygous for a mutant allele while the rest of the body was heterozygous (Stowers and Schwarz, 1999). Here, mutant flies were viable, but blind due to a loss of nerve excitation in the eye. Two independent screens performed by Stowers et al. and Guo et al. used this system to identify two distinct components important for transport; milton (Stowers et al., 2002), which coimmunoprecipitated with kinesin heavy chains, and miro (Guo et al., 2005), an integral mitochondrial membrane protein. Mutations in either of the genes appeared to abolish anterograde mitochondrial transport. The present paper by Glater et al. (2006) links these two results by showing both that kinesin, milton, and miro work together in anterograde transport and that milton attaches kinesin to mitochondria through miro.
& }: x: e; c) c) T" k+ U
) y' l! V* P/ h) S8 q7 }) }; j! e' FMilton binds kinesin heavy chains in place of kinesin light chains+ c3 R* P  W% n- Z" }8 M
. U# c& d0 s( f5 f) ]# i. J: |: T2 H
Glater et al. (2006) follow up on the original immunoprecipitation results showing interactions of milton with kinesin (Stowers et al., 2002). They demonstrate that milton forms a complex with the kinesin heavy chain and that no light chains could be found in the complex. This is different from most other known cargoes that bind to kinesin through the tetratricopeptide repeat (TPR) domains of the kinesin light chains (for review see Verhey et al., 2001). The only other example of cargo binding to the kinesin heavy chain is mRNP particles (Kanai et al., 2004; Ling et al., 2004); however, unlike mitochondria, the adaptor for RNA cargoes is yet unknown. These data are consistent with genetic experiments demonstrating that light chains are not required for transport of either mRNA or mitochondria by conventional kinesin (Palacios and St Johnston, 2002; Glater et al., 2006). Consistent with some cargoes binding the heavy chains directly, there is a small cellular pool of kinesin heavy chain dimers, which are not attached to kinesin light chains (Gyoeva et al., 2004). Milton not only interacts with kinesin heavy chains, but it competes directly with light chains to do so. Thus, the kinesin light chains may simply be the most common of several cargo adaptor proteins, including milton, that bind to the same region of the kinesin heavy chain.
- W1 @+ h: {+ k4 A* T" X4 w/ Q) y6 R: h5 F) `
Milton connects kinesin to miro, an integral mitochondrial protein0 t& ^7 S2 i- }1 R$ m0 O0 p, U
" H1 p$ d+ L/ }- l8 v
Milton localizes to mitochondria but has no obvious sequence elements that would explain such localization. However, genome-wide two-hybrid screening identified miro as potentially interacting with milton (Giot et al., 2003). This was an exciting finding for two reasons. First, miro is an integral mitochondrial membrane protein found in all eukaryotes (Fransson et al., 2003; Aspenstrom et al., 2004; Frederick et al., 2004). Second, miro had previously been implicated in defects in axonal transport of mitochondria in Drosophila (Guo et al., 2005). Glater et al. (2006) confirmed these two-hybrid results by immunoprecipitation and functional experiments. Normally miro has a transmembrane domain that integrates it into mitochondria, but overexpression of miro protein lacking this domain resulted in mislocalization of both miro and milton to the cytoplasm.
. _+ e+ U' w: x! e0 j% v
# |5 S  u2 f- UMiro as an adaptor and possible regulator! L- W# y  J) i( R

% J+ B2 A6 e- UIt is very likely that miro is not only an adaptor for milton, but is also a critical regulator of kinesin-dependent mitochondrial transport. Potential mechanisms of regulation of transport by the miro–milton complex are shown in Fig. 1 . Miro is a GTPase with both two GTP-binding domains and two EF hand domains that can potentially bind calcium. This means that either GTPase activity or calcium binding can regulate miro's conformation and, therefore, its ability to recruit milton or arrange the milton–kinesin complex at the surface of mitochondria. The existence of several splice variants of milton with different kinesin and miro binding properties implies that there might be several populations of mitochondria with different transport properties. None of these potential regulatory mechanisms has yet been tested, but some are very likely to occur.
1 r8 E" y. H/ L2 y( }5 d# |1 [9 {, Y5 w- _1 {# x2 y0 R
In addition to recruiting kinesin via milton, miro may have other important mitochondrial functions. Miro is present in yeast, whereas milton is not, and it is known to play a role in maintaining normal mitochondrial morphology. Furthermore, yeast use actin rather than microtubules for mitochondrial transport, so the function of miro in yeast is clearly different. Could miro be a more general mitochondrial adaptor that binds to other motile complexes (such as Arp2/3, myosin V, or dynein) besides milton
/ n! b2 @6 A* B# \0 \
2 r; }: d! E9 r( B7 u+ E: R+ tRecent observations of mitochondria transport in fly neurons in vivo demonstrated that there are two populations of mitochondria; one moves predominantly anterogradely while the other moves retrogradely (Pilling et al., 2006). Could it be that the GTPase or calcium "switch" on miro toggles between these two states or between microtubule- and actin-based transport It will take time to determine the exact role of miro in motor-based mitochondrial transport, but in the short term it is reasonable to ask whether kinesin is bound to retrogradely transported neuronal mitochondria. If not, could it be dissociated by GTP hydrolysis of miro This is an exciting and important area for further study because miro is likely to be the key universal adaptor and regulator for mitochondrial transport.- O  O  q% Y8 g) A. w

5 F% a2 H, t, ?% ?2 M: q; k% Q0 Q4 qHow to carry different cargoes on the same filament3 z! n/ K3 D! T' [

2 p- [! q8 z4 ?9 }2 R+ K0 MThe result by Glater et al. (2006) emphasizes one general principle of motor protein design: although the motor domains seem to be universal for a particular class of motor proteins, the cargo-binding parts are not. Motors of the same family are very divergent outside of the motor domain, and even a single motor can bind different classes of cargo using different parts of the molecule. This has been nicely demonstrated recently for cargoes of yeast class V myosin (myo2p) (Pashkova et al., 2006) and is further emphasized by the observation of Glater et al. (2006) that milton directly interacts with the kinesin heavy chain while most other known cargoes bind to the light chains. It is not surprising that the motor domains of molecular motors are so universal. After all, they bind to one of two filament types and all of them move by hydrolyzing ATP. However, motors such as conventional kinesin and cytoplasmic dynein probably move dozens of different cargoes along microtubules, and each of them must be transported and regulated differently. The only way to accomplish this is to diversify motor–cargo interactions, as is nicely demonstrated by the present work of Glater et al. (2006).8 r5 S% M& Z; A; O

1 m0 D0 A6 N& l$ DReferences
# n1 u$ q9 e0 C' N) j7 c3 n$ W
$ x' p8 X! P6 [$ P+ p  ^Aspenstrom, P., A. Fransson, and J. Saras. 2004. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377:327–337.
5 ?: f* d5 Y! S7 {  I6 s9 Q. o9 Z  z( v/ F# Y% U/ q7 M
Chada, S.R., and P.J. Hollenbeck. 2004. Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr. Biol. 14:1272–1276.- w( x  V3 b" N9 L

, V/ T$ {# b4 Z! F3 c; A  Y. O" IDavis, A.F., and D.A. Clayton. 1996. In situ localization of mitochondrial DNA replication in intact mammalian cells. J. Cell Biol. 135:883–893.* ?. y; o" R: h+ |* z7 r

8 i0 j( C0 ]* vFransson, A., A. Ruusala, and P. Aspenstrom. 2003. Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J. Biol. Chem. 278:6495–6502.
  s4 k" h% E% q5 ^% ^8 E& `/ k, \( R" I# _# C& k  b9 J/ O
Frederick, R.L., J.M. McCaffery, K.W. Cunningham, K. Okamoto, and J.M. Shaw. 2004. Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell Biol. 167:87–98.
; R# a9 c1 M& j0 ^' @2 R1 J& ~4 F
Giot, L., J.S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, Y.L. Hao, C.E. Ooi, B. Godwin, E. Vitols, et al. 2003. A protein interaction map of Drosophila melanogaster. Science. 302:1727–1736." `( Z' `1 c& N$ N8 V) v8 y
7 @3 p7 S2 e$ E/ e; W( q' g) t
Glater, E.E., L.J. Megeath, R.S. Stowers, and T.L. Schwarz. 2006. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173:545–557.
4 N5 @/ h, ^' D! `/ `
1 X9 N1 f* c; B" z" P8 Q/ Q, lGuo, X., G.T. Macleod, A. Wellington, F. Hu, S. Panchumarthi, M. Schoenfield, L. Marin, M.P. Charlton, H.L. Atwood, and K.E. Zinsmaier. 2005. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron. 47:379–393.+ ^5 \0 @2 S, s% G" @) D7 \0 H

+ u, H2 s; ?- L3 j: V! nGyoeva, F.K., D.V. Sarkisov, A.L. Khodjakov, and A.A. Minin. 2004. The tetrameric molecule of conventional kinesin contains identical light chains. Biochemistry. 43:13525–13531.( X8 c& y7 P2 J$ b+ h' E: o

/ G( E1 N0 C) Z6 JHurd, D.D., and W.M. Saxton. 1996. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics. 144:1075–1085.
0 N* r- F" V# K9 i" N$ Q+ i, v* k" S1 Q, a3 x! ?3 P
Kanai, Y., N. Dohmae, and N. Hirokawa. 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron. 43:513–525.
7 E3 r. |1 k% K5 I+ s9 J- ~0 {9 y# K4 N
Ling, S.C., P.S. Fahrner, W.T. Greenough, and V.I. Gelfand. 2004. Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proc. Natl. Acad. Sci. USA. 101:17428–17433., e; Q' y! t. E9 D6 r
1 \6 I2 Z9 e4 j- h5 Z2 [3 k' O& E
Miller, K.E., and M.P. Sheetz. 2004. Axonal mitochondrial transport and potential are correlated. J. Cell Sci. 117:2791–2804.: E. p- ]/ K0 H! ]) M

9 ^" J+ K9 @/ t6 y6 aMorris, R.L., and P.J. Hollenbeck. 1993. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell Sci. 104:917–927.  G  r- j( f( O

# {1 ^2 S* u. H. HMorris, R.L., and P.J. Hollenbeck. 1995. Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell Biol. 131:1315–1326.2 }2 q  P9 F8 X2 |6 D

1 t3 O3 u$ d9 D  r' IPalacios, I.M., and D. St Johnston. 2002. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development. 129:5473–5485./ Q4 P( D; @- c2 `/ b3 w+ J
& v3 K1 b7 q/ b* V) p% ~  X5 A) [
Pashkova, N., Y. Jin, S. Ramaswamy, and L.S. Weisman. 2006. Structural basis for myosin V discrimination between distinct cargoes. EMBO J. 25:693–700.
; v* N/ e, ]* S: Y
! s0 F  O) i- P/ hPilling, A.D., D. Horiuchi, C.M. Lively, and W.M. Saxton. 2006. Kinesin-1 and dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol. Biol. Cell. 17:2057–2068.
* K  H* ]. T. Z. W- O/ E2 r/ Q7 d, ~1 n7 t4 o5 v. l
Stowers, R.S., and T.L. Schwarz. 1999. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics. 152:1631–1639.7 e0 w, V- [  l
4 d" b: A) @2 f: ^
Stowers, R.S., L.J. Megeath, J. Gorska-Andrzejak, I.A. Meinertzhagen, and T.L. Schwarz. 2002. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron. 36:1063–1077.
/ c& m& M, j! K; X
! q& Y2 K8 ]5 E7 t. GTanaka, Y., Y. Kanai, Y. Okada, S. Nonaka, S. Takeda, A. Harada, and N. Hirokawa. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell. 93:1147–1158.
0 {8 i* _# H8 J( _0 F( s) E, x" e2 ~4 a! i* m( e
Verhey, K.J., D. Meyer, R. Deehan, J. Blenis, B.J. Schnapp, T.A. Rapoport, and B. Margolis. 2001. Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152:959–970.(Sarah E. Rice and Vladimi)
作者: 罗马星空    时间: 2015-7-1 13:43

这贴子你会收藏吗  
作者: tuanzi    时间: 2015-8-12 13:22

不错!  
作者: 依旧随遇而安    时间: 2015-8-13 10:43

支持你加分  
作者: 龙水生    时间: 2015-8-19 15:27

继续查找干细胞研究资料
作者: aakkaa    时间: 2015-9-2 15:01

生殖干细胞
作者: 兔兔    时间: 2015-10-4 14:54

应该加分  
作者: yukun    时间: 2015-10-24 11:10

楼上的稍等啦  
作者: 红旗    时间: 2015-10-30 13:35

我帮你 喝喝  
作者: laoli1999    时间: 2015-11-2 13:43

干细胞治疗糖尿病  
作者: tuanzi    时间: 2015-12-14 16:43

自己知道了  
作者: xuguofeng    时间: 2016-1-7 19:09

晕死也不多加点分  
作者: 泡泡鱼    时间: 2016-1-11 15:01

一个有信念者所开发出的力量,大于99个只有兴趣者。  
作者: s06806    时间: 2016-1-19 10:34

心脏干细胞
作者: xuguofeng    时间: 2016-2-17 18:54

不错啊! 一个字牛啊!  
作者: 刘先生    时间: 2016-3-7 16:01

楼主福如东海,万寿无疆!  
作者: biopxl    时间: 2016-3-14 23:05

谢谢干细胞之家提供资料
作者: 风云动    时间: 2016-4-24 11:54

看完了这么强的文章,我想说点什么,但是又不知道说什么好,想来想去只想  
作者: 老农爱科学    时间: 2016-5-14 21:21

我帮你 喝喝  
作者: 昕昕    时间: 2016-6-2 11:18

鉴定完毕.!  
作者: dreamenjoyer    时间: 2016-6-30 14:10

这个贴不错!!!!!  
作者: 加菲猫    时间: 2016-7-1 20:43

一个人最大的破产是绝望,最大的资产是希望。  
作者: 123456zsz    时间: 2016-7-24 16:42

HOHO~~~~~~  
作者: 兔兔    时间: 2016-8-14 14:59

给我一个女人,我可以创造一个民族;给我一瓶酒,我可以带领他们征服全世界 。。。。。。。。。  
作者: doors    时间: 2016-9-22 12:35

今天的干细胞研究资料更新很多呀
作者: 甘泉    时间: 2016-9-22 15:54

加油站加油  
作者: DAIMAND    时间: 2016-10-7 20:25

回复一下  
作者: changfeng    时间: 2016-10-12 21:27

家财万贯还得回很多贴哦  
作者: 狂奔的蜗牛    时间: 2016-10-24 19:09

哈哈,看的人少,回一下  
作者: DAIMAND    时间: 2016-11-17 12:18

希望大家都有好运  
作者: 知足常乐    时间: 2016-11-17 18:49

貌似我真的很笨????哎  
作者: 三星    时间: 2016-11-18 22:09

顶你一下.  
作者: nauticus    时间: 2016-11-23 11:17

今天再看下  
作者: dreamenjoyer    时间: 2017-1-10 14:40

对不起,我走错地方了,呵呵  
作者: 舒思    时间: 2017-2-4 14:09

ips是诱导多能干细胞induced pluripotent stem cells iPS
作者: HongHong    时间: 2017-2-18 07:53

我等你哟!  
作者: ringsing    时间: 2017-2-26 11:07

干细胞从业人员  
作者: 快乐小郎    时间: 2017-3-3 13:10

感觉好像在哪里看过了,汗~  
作者: 若天涯    时间: 2017-3-11 03:56

干细胞疾病模型
作者: Whole    时间: 2017-3-23 02:42

应该加分  
作者: 石头111    时间: 2017-4-1 00:09

既然来了,就留个脚印  
作者: 橙味绿茶    时间: 2017-4-23 01:02

哈哈 我支持你
作者: beautylive    时间: 2017-5-5 07:27

我等你哟!  
作者: 小倔驴    时间: 2017-5-30 03:27

(*^__^*) 嘻嘻……  
作者: Greatjob    时间: 2017-6-6 01:35

我卷了~~~~~~~  
作者: 风云动    时间: 2017-6-10 02:21

干细胞治疗糖尿病  
作者: frogsays    时间: 2017-6-16 14:10

努力,努力,再努力!!!!!!!!!!!  
作者: 丸子    时间: 2017-6-30 08:18

顶也~  
作者: beautylive    时间: 2017-7-16 13:55

嘿...反了反了,,,,  
作者: dd赤焰    时间: 2017-7-23 10:08

严重支持!
作者: highlight    时间: 2017-8-1 17:54

顶下再看  
作者: 墨玉    时间: 2017-8-7 18:29

谢谢分享了!   
作者: chongchong    时间: 2017-8-9 14:40

应该加分  
作者: 黄山    时间: 2017-8-10 11:53

干细胞产业是朝阳产业
作者: qibaobao    时间: 2017-8-17 18:38

淋巴细胞
作者: 生科院    时间: 2017-8-22 13:34

爷爷都是从孙子走过来的。  
作者: awen    时间: 2017-8-30 17:01

好贴坏贴,一眼就看出去  
作者: 温暖暖    时间: 2017-8-31 23:00

呵呵 大家好奇嘛 来观看下~~~~  
作者: dmof    时间: 2017-10-2 05:21

很好!很强大!  
作者: xiao2014    时间: 2017-10-5 03:25

干细胞我这辈子就是看好你
作者: 再来一天    时间: 2017-10-5 06:31

努力~~各位。。。  
作者: highlight    时间: 2017-11-24 11:27

很有吸引力  
作者: 杏花    时间: 2017-12-5 18:38

不早了 各位晚安~~~~  
作者: beautylive    时间: 2018-1-4 20:27

病毒转染干细胞
作者: 三星    时间: 2018-1-17 04:36

一个子 没看懂  
作者: www1202000    时间: 2018-1-21 05:10

帮你顶,人还是厚道点好  
作者: frogsays    时间: 2018-1-24 10:34

人之所以能,是相信能。  
作者: 一个平凡人    时间: 2018-1-29 15:38

不错的东西  持续关注  
作者: doors    时间: 2018-1-30 22:54

干细胞研究人员的天堂
作者: 修复者    时间: 2018-1-31 18:49

抢座位来了  
作者: 依旧随遇而安    时间: 2018-2-19 06:01

干细胞与基因技术
作者: 兔兔    时间: 2018-2-28 17:13

每天都会来干细胞之家看看
作者: 三星    时间: 2018-3-5 17:43

挤在北京,给首都添麻烦了……  
作者: 黄山    时间: 2018-3-12 19:35

谁都不容易啊 ~~  
作者: 橙味绿茶    时间: 2018-3-18 05:34

顶你一下,好贴要顶!  
作者: ines    时间: 2018-3-23 07:23

脂肪干细胞
作者: aakkaa    时间: 2018-4-27 16:35

越办越好~~~~~~~~~`  
作者: ines    时间: 2018-5-4 11:10

谢谢干细胞之家提供资料
作者: 安安    时间: 2018-5-9 17:33

干细胞疾病模型
作者: tuanzi    时间: 2018-5-13 16:03

呵呵 都没人想我~~  
作者: nosoho    时间: 2018-6-10 23:53

初来乍到,请多多关照。。。嘿嘿,回个贴表明我来过。  
作者: 依旧随遇而安    时间: 2018-6-29 13:28

不错 不错  比我强多了  
作者: 桦子    时间: 2018-7-15 14:10

我也来顶一下..  
作者: 碧湖冷月    时间: 2018-7-25 10:42

顶也~  
作者: syt7000    时间: 2018-8-16 08:09

孜孜不倦, 吾等楷模 …………  
作者: doors    时间: 2018-9-15 22:40

今天没事来逛逛  
作者: whyboy    时间: 2018-9-16 21:15

哈哈,有意思~顶顶 ,继续顶顶。继续顶哦  
作者: vsill    时间: 2018-9-17 09:09

我顶啊。接着顶  
作者: happyboy    时间: 2018-9-19 17:05

不错不错.,..我喜欢  
作者: 刘先生    时间: 2018-9-25 11:19

不错啊! 一个字牛啊!  
作者: kaikai    时间: 2018-9-26 01:11

哎 怎么说那~~  
作者: 与你同行    时间: 2018-9-30 23:25

好啊,,不错、、、、  
作者: doors    时间: 2018-10-14 23:34

偶真幸运哦...  
作者: 碧湖冷月    时间: 2018-11-7 23:14

造血干细胞
作者: aakkaa    时间: 2018-11-15 00:06

我卷了~~~~~~~  
作者: dada    时间: 2018-11-15 00:34

哈哈 我支持你
作者: dongmei    时间: 2018-11-15 00:37

干细胞存储  
作者: 大小年    时间: 2018-11-21 22:50

生殖干细胞
作者: changfeng    时间: 2018-12-1 04:32

今天再看下  
作者: 123456zsz    时间: 2018-12-2 05:35

皮肤干细胞




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://stemcell8.cn/) Powered by Discuz! X1.5