干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 1564372|回复: 623
go

[生物学相关学科类] PDF电子书:Developmental Biology, Ninth Edition     [复制链接]

Rank: 2

积分
52 
威望
52  
包包
658  
楼主
发表于 2010-7-15 02:31 |只看该作者 |倒序浏览 |打印
本帖最后由 细胞海洋 于 2010-7-15 07:40 编辑
7 |/ o: X2 v. U. H, u( M, s$ i. I0 t0 H
Developmental Biology, Ninth Edition& v1 U5 t3 j- H
Scott F. Gilbert
  P4 ^2 e% J" u" W  ]' p* OApril 12, 2010
: ~; `) q! n+ R3 h) W* D711 pages, 699 illustrations. O5 s9 `0 y0 P/ b# ^+ d4 l) J
casebound
# {$ K2 y% E, ~/ w1 M  p$ Y7 F: E3 a. S5 y1 Q

" X% w( E6 q2 }During the past four years, the field of developmental biology has begun a new metamorphosis. The Ninth Edition of Developmental Biology mirrors this shift with a wholly revised text, over 600 new literature citations, and substantial reorganization of content. The introductory section has been streamlined from six chapters to three—one each on developmental anatomy, the mechanisms of gene regulation during differentiation, and cell–cell communication during morphogenesis. Another new feature is the addition of short part openers that address key concerns in developmental biology. These provide an introduction to the subsequent chapters, telling the reader what to expect and placing that information into a specific context. Each chapter ends with a guide to Web-based resources relevant to that chapter’s content, and the Ninth Edition is the first to include a glossary of key terms. Some of the new material in this edition includes: mesenchymal and induced pluripotent stem cells; the transdifferentiation of pancreatic cells; new data on sea urchin micromere specification; the mechanisms whereby Sry and Wnt signaling determine mammalian sex; the memory of cell fate during amphibian limb regeneration; how bats got their wings and how dachshunds got their short legs.
# y- D# U: r2 b6 J% L* J+ z7 w& w
  O& Z0 V& e  h; S" zI. Principles: Introducing Developmental Biology- h! x9 y) O' D! O) d7 q. m7 K
Introducing the questions and principles that are the foundation of developmental biology
+ K. r1 }& L( g- U2 m( j: ]
4 V6 H7 z& W. P& [4 E- Y1. Developmental anatomy
7 k, V- y( g( n$ |; h8 }7 {/ I- O, M2 K, }, a
•Evolutionary developmental biology of bat wings and dachshund legs* Y" A/ C3 d" n/ g# j
2. Developmental genetics
  j9 ^; n2 w0 G2 d$ G+ y
/ n* Y. q: `& n3 e•Roles of microRNAs in controlling cell identity
- X( G; J8 U0 `) Z; U•Histone remodeling
/ X. A' a9 a6 ]5 U6 X) U3 f' q•Reprogramming exocrine pancreas into beta-cells4 I- C( {0 S0 i6 i! q2 v2 S
•Dscam splicing
" F* V# s8 b5 Y4 o: }- n7 d2 l•Translation initiation
- }, o, s. \& `- ]% \3 m" c3. Cell–cell communication in development 0 w3 J7 z( U' M$ U
; R$ {: f1 |# U
•Epithelial–mesenchymal transitions" E7 {4 I( D7 Z1 {& Y% C
•Cell shape change and morphogenesis/ i9 {& k3 t% S+ t, `
•Elasticity of extracellular matrix regulating differentiation' T1 k7 a& @4 j: l0 {9 I
•Coordination of cell migration
* F- ~! |& ^- A0 O- ~  \3 RII. Specification: Introducing Early Embryonic Development
: E8 t: Z1 \2 QAn introduction to the modes of specification and determination used in the animal kingdom " x) m! m% A6 |5 I

( ?7 X8 s" d- H% c4. Fertilization $ b( x& O9 M- W/ P& p5 K3 H
6 H( k2 X& T; g: m) G% Z
•Soluble PLC-zeta in mammalian fertilization' t( [, N- o0 M/ ^7 |# Y
•The mechanisms for cortical granule exocytosis
4 n# h4 B* z9 Z1 \•Mammalian blocks to polyspermy, Z% \# m( C0 i' O  w7 f
•Regulation of acrosome reactions
0 `: O' c2 S+ c4 E3 M5. Early development in selected invertebrates
. B+ \  R2 M) ~% N+ H4 p6 m. p4 f3 H" }1 f7 T5 ?, Y1 J% h; H; k) ~# k
•Specification of sea urchin micromeres and recruitment of skeletogenic genes
" u$ q8 A9 e$ m$ u: L•Regulation of sea urchin gastrulation
+ {/ c3 j# S7 C, U% W5 z1 Y1 p7 y9 d•Double-negative gate gene circuits% f0 V* @" Q8 A6 m" _
•Left–right axis formation in snails, tunicates, and nematodes
2 p: w+ T: E/ S  }# w# ?8 {6 k•Mollusk D-quadrant signaling: z+ u8 ], ?7 F) \) g9 }
•Centrosome-attracting bodies in tunicate development
% P' C9 x2 g" Y7 ]  K+ l8 W6. The genetics of axis specification in Drosophila ! S0 D9 g7 F/ N; B+ @7 T" \

1 ~: r# G! G0 p- i0 G& g5 v•Smaug in maternal-to-zygote transition
9 |! G; ^. O0 h  f& L% N, k•The bicoid mRNA gradient
) z7 X/ E$ j$ ~( J•Cytoskeletal and cell adhesion changes induced by homeotic genes
9 c! q2 T* J+ T* p* ]7 k! ?" F•Mechanisms of cellularization3 T; O) o* K; ?: [" A. [2 s" J: k
•Mechanisms of posterior localization* ]. j, X! \. I) Q3 e
•Realisator gene pathways
" D4 t0 L8 p& m% _$ F- [4 [" N7. Amphibians and fish: Early development and axis formation
6 |9 \7 y8 ~7 w( r; ^
' b0 N6 A& b. d, S•Cell adhesion and cell shape changes during gastrulation: @. m: s- b6 c, x$ P/ ~. O
•Vg1 signaling for mesoderm and endoderm specification
: v9 N. [0 P% F# x( U9 \7 {/ @1 g•Importance of Wnt11 for dorsal–ventral polarity
+ u5 K2 M3 p, ?9 y, J2 I" q•New pathway of organizer formation
4 Y0 G! Q7 J. j•Single-cell internalization in zebrafish gastrulation
$ z4 }0 \) l0 n3 D, D; I7 ?6 j8. Birds and mammals: Early development and axis formation 6 Z9 m, ?1 }/ d$ B8 p

; r/ p* D0 n& x0 P: w•Intercalation and primitive streak formation+ i0 X# r7 v8 d+ ?7 T4 B5 q
•How the amniote mesenchyme cells are instructed to ingress into the embryo4 o( ~$ ~3 }. {2 I
•Specification of chick germ layers
  A/ W# u  n0 @" z" m7 b" }+ w- V$ D•How the mammalian inner cell mass separates from the trophectoderm; u* r, W9 G4 J/ b
•How the embryonic axis is established in the blastocyst" Q/ V/ }; J& r, B0 f% B# g
III. Stem Cells: Introducing Organogenesis
$ p  U& w3 G1 H$ `# QAn introduction to the stem cell concept, including new material on embryonic and induced stem cells, mesenchymal stem cells, and the construction of stem cell niches " s2 b) ~5 j% ?6 Y" R# ~' L

9 S; c" z- x, a1 q+ i9. The emergence of the ectoderm: CNS and epidermis $ {$ M  n* c  Q( s) A

0 q# ^; k: G  ]0 {( j•How the layers of the mammalian cortex are defined and how cells are instructed to reach these layers: |8 [! x3 }# \  P6 R2 A! l6 K) T+ ^
•The developmental regulatory genes that may be involved in primate brain evolution) z) y% h$ [# i" j; T
•How the hair follicles become spaced and the hair shaft grows" F7 m! n* ?4 x% ~
•EDAR mutations and epidermal appendages* ?, I! F+ Q/ u$ |/ C* }
•Multipotent retinal stem cells and their specification by microRNAs and timing2 o2 x) b* F1 f* i
10. Neural crest cells and axonal specificity + S: A5 s) M( e" p# j  [2 K& g

( ~6 q& ~( N9 Q9 s. D7 b•Neural crest cell specification by paracrine factors and transcription factors. _% v! `, X4 {1 K0 Z1 o% I
•Migrational control of neural crest cells2 }8 n2 T  n5 n) i, u) o' u
•Adrenal cortex formation
: M. C3 s; ~1 N( E! z•Reciprocal regulation of facial and brain structures
) ^" {; f6 D. H. Z; }•Multipotency of neural crest cells( E" j; F6 K8 X; O" _+ P4 c7 @5 }
•Species-specific facial patterns0 U/ h+ [8 j$ ]3 h0 r& {) Q' `- b
•Transcription factors in neural guidance5 p- N$ e, @5 ~6 W) t9 o
•The Brainbow technique
& v5 U* e+ `# g2 L* C+ U9 G, n•Retinal guidance mechanisms$ ^# \& u; ]& U6 ?6 M% B3 d2 m- B
11. Paraxial and intermediate mesoderm % p/ f' D- V8 ?+ n9 C  r  u9 q: r
# ]; |8 t3 j& U4 x
•The new cell types (fat, tendons, joints, blood vessels) that are derived from the somites5 T8 j' I5 D0 T4 \. f" g
•The formation of satellite cells for muscle growth and repair* U$ y$ E# m& H# \( B, e; f
•Epiblast muscle precursor cells
  o3 h# N9 Y3 b1 |3 y3 ?' @3 E, z•Head mesoderm and its relationship to neural crest cells: T# e7 s* x2 k2 h- H
•Myostatin6 `2 `) C; e. L' A, I- m  m+ |
•Somite-derived angioblasts
; ~- c$ G. d0 ?; K* f•Models of somite periodicity
: A/ F5 k+ o( Q% b•Generation of kidney morphogenetic field# }( c" y" P  X4 m
•Nephron specification$ O3 S1 H& u' P& c1 Y
12. Lateral plate mesoderm and endoderm , j: a0 e+ q$ @8 j8 o9 G/ P6 n7 C
, d2 T1 a& j7 r" t9 _  R5 g
•Heart fields and patterning4 }, ]( [: h1 U* @- E5 R8 K. z
•How the heart forms from multipotent stem cells
0 B- w) o* F. b( O3 d- w  V: O•Common endothelial and hematopoietic progenitor cells
; l1 x) }! f# d% q•Formation of blood vessel tubes- k' N9 s4 {3 K  S
•Angiogenesis and VEGF receptors
6 G8 i/ ~1 ?8 M$ [•Angiogenesis blockade in disease and in cancer therapy. h: a: ?# ^8 j- w
•Contribution of yolk sac to adult hematopoiesis
& z0 x  J4 b. q6 Y) x3 Z•Roles of shear force on cardiac and vessel development' y6 p8 r5 ~# L. h2 s
•Mesoderm-endoderm interactions in gut tube development/ o- w4 _+ i* M
•Control of liver and pancreas development
, `: L8 a3 P8 @/ l  l•The formation of new blood vessels and the interaction of biomechanical and genetic factors
* K3 [! e  K3 \. r! Y# `7 M: Y# u13. Development of the tetrapod limb
0 k) K% u* S7 G( o: @; C0 |0 }  ~/ i: s/ ?$ U. P
•The integration and self-regulation of paracrine pathways to enable limb patterning9 |+ Q: @7 Q/ {. g- D4 O) y7 B  V
•Formation of joints
1 A' \  j) O2 \•Sonic hedghog regulation and limb outgrowth
3 c( e+ x" r) i8 t+ H•Tiktaalik
; ?0 ]3 v% t; G7 j' ?( A8 [. w) L•Digit identity genes4 ~! ~& U/ g; Z) R
14. Sex determination 1 L2 j1 B8 X+ n; h6 l9 }
  a4 u+ b! o" [2 @
•Roles of Sry in promoting testis development and blocking ovarian development9 ?4 l9 a& O/ y2 n! B8 |4 \
•Role of Wnt4, R-spondin1, and beta-catenin in promoting ovarian development and blocking testis development: a, V0 N: R' [5 L3 _
•Sex differences in brain development
( A; ^# f+ b% H% O•Fruitless gene function in Drosophila
% V; m  o5 N- Q% i•Sexual differentiation in wallabies and chickens2 W' X6 e9 P! k
•Temperature-dependent sex determination
) U* }  K5 _: Q/ c15. Postembryonic development: Metamorphosis, regeneration, and aging
$ Y4 T8 V+ C; M" @9 }
4 l1 D2 u/ U* K" A7 r•Cell fate memory in amphibian limb regeneration
+ u; B6 b8 e; f4 o4 ~& [2 [6 _•Role of neurons in regeneration4 Q+ I' N' y6 p3 H
•Aging through epigenetic drift- E( ?+ @& W" O& `4 J; d
•Evolution of larvae  v6 X2 a* B$ V& ]) Z
•Self-regulation of liver regeneration( j7 ^  @* \1 d: c& b+ k
•Nuclear envelope defects in aging
* }; G& L0 t: W4 e. P16. The saga of the germ line 4 n: n, M2 d7 N& y7 E

0 j8 B6 O: {5 M4 y# o" S4 h•Migration of chick and mammalian germ cells
$ y( `! S  Y3 _9 @1 @% N* j" u•Traveling niche hypothesis
. f) M3 r& Q( ?•Germ cell specification in mice( ^' O  i* k0 T+ t; h7 y
•Cohesin in meiosis0 k/ z. q; |1 Y7 ^- S
•Regulation of cytostatic factor in frog oocytes
( Q  P+ {1 h6 M! M1 l7 C& G•Retinoic acid regulation of meiotic initiation3 Q) T% ^  ~$ K: q+ U
•Sperm cell niches
6 h6 x' ^7 {0 X4 N5 z0 g2 \* W( U" }IV. Systems Biology and Development
  @" K% J8 ~' L' I7 O! R; rIntroducing the integration and extension of developmental biology into the areas of medicine, ecology, and evolution
0 R8 o. ~5 g" B( C; d  J6 O' @
' q% M6 o6 R9 p9 a" b17. Medical aspects of developmental biology 9 M; `( d3 U' D- v5 S6 ?
' A. m$ Y7 S" J
•Altered synaptic function in Down syndrome neurons
- |" J! e# K; r•Teratogenesis and recreational drugs
8 O. e4 W" a0 G$ s•Targeting paracrine factor pathways in cancers8 B9 F" u* P8 D# ]% S. v
•VEGFR-3 as a target for cancer therapeutics' @: H3 {0 Q7 e2 X
•Theories of cancer stem cells
% X5 y( g( N2 C•Endocrine disruption
. d( n2 Z+ g! ~8 g. E/ v4 Q* ?•Medical aspects of induced pluripotent stem cells
5 J+ I; A" r- @, N•Stem cell gene therapy8 N$ L6 U8 X; B6 \# e: A
•Regenerative medicine
: h0 @* G/ @1 r, q18. Developmental plasticity & F) ]2 ^# A! i* {$ @) r  s
* R3 p+ t) W* \4 M+ i, ]
•Vibrational signals for treefrog developmental plasticity% W9 x* G3 O+ ?8 k. P$ e6 u
•Developmental symbioses in mammalian gut 4 X& U8 Z( j" E- H0 Q" r9 b8 {$ }
•Neural plasticity
; [: d6 P9 F4 e% _•Transgenerational effects of environment
! d/ q' b; O/ S9 c2 A# R& g5 l. [•Trade-offs in development
  c3 ]# W! Q* a: t+ a% q( V19. Evolutionary developmental biology
* O6 g/ [8 g3 G
4 @8 e- N; H6 ?" Z6 sitx1 and Duffy blood group enhancer modularity and selection2 t& J% z; J* s/ Y" A. U! h% G
•How the turtle gets its shell
- e: j) s, m5 y! B•HoxA-11 and the evolution of the mammalian uterus
& g% I. O+ e- P7 `•Evolution of the neural crest
: \4 M& C4 i* A% D5 h+ Q& h3 s: j•Bilaterian ancestry
5 G, a# I7 D. `% Z6 u•Genetic assimilation
/ h) ^$ L( t4 M- M•Co-development and co-evolution3 j7 Q* P1 J( M0 h) R" c

4 {' P$ B: _' @4 B+ r
游客,如果你要查看本帖隐藏内容请回复
7 N1 U" ?4 ^, ?3 e  e, ~

9 W$ [; P( P4 i: q其实网上有许多关于developmental biology 的6th,8th版本,但多为免费网站上复制下来转换的PDF版,排版很乱,效果很差。不知道那位高手有这几个版本的高质量的PDF版,类似于我提供的附件里面的那种版本?希望能让我们大家共享!来源一般是购买的正版的ebook才有这种效果。
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 5 + 10 极好资料

总评分: 威望 + 5  包包 + 10   查看全部评分

Rank: 2

积分
52 
威望
52  
包包
658  
沙发
发表于 2010-7-15 02:34 |只看该作者
http://www.coursesmart.com/9780878933846
5 t, [  D, f" `: B) {5 e4 V
( Z$ g: V6 F' f( z$ K* d这是参考网站

Rank: 2

积分
171 
威望
171  
包包
320  
藤椅
发表于 2010-7-15 08:40 |只看该作者
多谢分享好书

Rank: 4

积分
1073 
威望
1073  
包包
2423  

金话筒 优秀会员

板凳
发表于 2010-7-15 08:50 |只看该作者
干细胞之家微信公众号
xiexie

Rank: 4

积分
1073 
威望
1073  
包包
2423  

金话筒 优秀会员

报纸
发表于 2010-7-15 08:53 |只看该作者
回复 1# zsutx2005 怎么是发育遗传学啊?

Rank: 2

积分
217 
威望
217  
包包
2891  

优秀会员

地板
发表于 2010-7-15 09:43 |只看该作者
谢谢分享

Rank: 4

积分
1343 
威望
1343  
包包
387  

金话筒 优秀会员 热心会员 小小研究员 积极份子 帅哥研究员

7
发表于 2010-7-15 09:43 |只看该作者
我也需要方面的资料

Rank: 4

积分
1387 
威望
1387  
包包
5405  

金话筒 优秀会员

8
发表于 2010-7-15 09:53 |只看该作者
谢谢!

Rank: 4

积分
1343 
威望
1343  
包包
387  

金话筒 优秀会员 热心会员 小小研究员 积极份子 帅哥研究员

9
发表于 2010-7-15 10:06 |只看该作者
但是您为什么只发布了第二章,其他的章节呢?

Rank: 2

积分
52 
威望
52  
包包
658  
10
发表于 2010-7-15 10:59 |只看该作者
回复 9# dahui
& ?. @0 ~8 t* [3 ~9 |! n. i% ]/ Q# f! E6 w5 v3 R

3 N& E& P, |" s: q  A1 R    我也没有全部的PDF版,发帖只是希望拥有该资源的朋友能共享一下,我也很想要这本书!
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-6-11 06:27

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.